Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 626259, 10 pages
http://dx.doi.org/10.1155/2014/626259
Research Article

Erythrophagocytosis in Entamoeba histolytica and Entamoeba dispar: A Comparative Study

1Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, IPN, Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360 Mexico City, DF, Mexico
2Faculty of Superior Studies Iztacala, Biology, UNAM, Los Reyes Iztacala, 54090 Tlalnepantla, MEX, Mexico

Received 28 February 2014; Revised 9 May 2014; Accepted 9 May 2014; Published 5 June 2014

Academic Editor: Abraham Landa-Piedra

Copyright © 2014 Daniel Talamás-Lara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization, “Amoebiasis,” Weekly Epidemiological Record, vol. 72, pp. 97–98, 1997. View at Google Scholar
  2. R. Haque, C. D. Huston, M. Hughes, E. Houpt, and W. A. Petri Jr., “Amebiasis,” The New England Journal of Medicine, vol. 348, no. 16, pp. 1565–1573, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Martínez-Palomo, “Parasitic amebas of the intestinal tract,” in Parasitic Protozoa, J. P. Kreier and J. R. Barker, Eds., pp. 65–141, Academic Press, New York, NY, USA, 2nd edition, 1993. View at Google Scholar
  4. “WHO/PAHO/UNESCO report. A consultation with experts on amoebiasis. Mexico City, Mexico 28-29 January, 1997,” in Epidemiological Bulletin, vol. 18, no. 1, pp. 13–14, 1997.
  5. L. S. Diamond and C. G. Clark, “A redescription of Entamoeba histolytica Schaudinn, 1903 (Emended Walker, 1911) separating it from Entamoeba dispar Brumpt, 1925,” The Journal of Eukaryotic Microbiology, vol. 40, no. 3, pp. 340–344, 1993. View at Google Scholar · View at Scopus
  6. I. Meza, “Extracellular matrix-induced signaling in Entamoeba histolytica: its role in invasiveness,” Parasitology Today, vol. 16, no. 1, pp. 23–28, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Bansal, P. Ave, S. Kerneis et al., “An ex-vivo human intestinal model to study Entamoeba histolytica pathogenesis,” PLoS Neglected Tropical Diseases, vol. 3, no. 11, article e551, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Tsutsumi, A. Ramirez-Rosales, H. Lanz-Mendoza et al., “Entamoeba histolytica: erythrophagocytosis, collagenolysis, and liver abscess production as virulence markers,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 86, no. 2, pp. 170–172, 1992. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Trissl, A. Martinez-Palomo, M. de La Torre, R. de la Hoz, and E. Perez de Suárez, “Phagocytosis of human erythrocytes by Entamoeba histolytica. Quantitative study,” Archivos de Investigacion Medica, vol. 9, no. 1, pp. 219–222, 1978. View at Google Scholar · View at Scopus
  10. E. Orozco, G. Guarneros, A. M. Palomo, and T. Sanchez, “Entamoeba histolytica. Phagocytosis as a virulence factor,” Journal of Experimental Medicine, vol. 158, no. 5, pp. 1511–1521, 1983. View at Google Scholar · View at Scopus
  11. S. Bhattacharya, A. Bhattacharya, and W. A. Petri Jr., “Examining Entamoeba,” Trends in Parasitology, vol. 18, no. 5, pp. 196–197, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Suzuki, G. Miller, J. Morales, V. Shulaev, M. A. Torres, and R. Mittler, “Respiratory burst oxidases: the engines of ROS signaling,” Current Opinion in Plant Biology, vol. 14, no. 6, pp. 691–699, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. B. Novikoff, P. M. Novikoff, C. Davis, and N. Quintana, “Studies on microperoxisomes. II. A cytochemical method for light and electron microscopy,” Journal of Histochemistry and Cytochemistry, vol. 20, no. 12, pp. 1006–1023, 1972. View at Google Scholar · View at Scopus
  14. L. S. Diamond, D. R. Harlow, and C. C. Cunnick, “A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 72, no. 4, pp. 431–432, 1978. View at Google Scholar · View at Scopus
  15. L. S. Diamond, C. G. Clark, and C. C. Cunnick, “YI-S, a casein-free medium for axenic cultivation of Entamoeba histolytica, related Entamoeba, Giardia intestinalis and Trichomonas vaginalis,” The Journal of Eukaryotic Microbiology, vol. 42, no. 3, pp. 277–278, 1995. View at Google Scholar · View at Scopus
  16. W. A. Fonzi and M. Y. Irwin, “Isogenic strain construction and gene mapping in Candida albicans,” Genetics, vol. 134, no. 3, pp. 717–728, 1993. View at Google Scholar · View at Scopus
  17. J. B. Hicks, A. Hinnen, and G. R. Fink, “Properties of yeast transformation,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 43, no. 2, pp. 1305–1313, 1979. View at Google Scholar · View at Scopus
  18. A. Martínez-Palomo, A. González-Robles, and B. C. de Ramírez, “Ultraestructural study of various Entamoeba strains,” in Proceedings of the International Conference of Amebiasis, B. Sepúlveda and L. S. Diamond, Eds., vol. 1, pp. 226–237, IMSS, 1976.
  19. K. B. Hellum, “Standardization of the nitroblue tetrazolium test. Influence of pH, dye concentration and sample storage,” Scandinavian Journal of Infectious Diseases, vol. 9, no. 2, pp. 125–130, 1977. View at Google Scholar · View at Scopus
  20. D. R. Boettner, C. D. Huston, J. A. Sullivan, and W. A. Petri Jr., “Entamoeba histolytica and Entamoeba dispar utilize externalized phosphatidylserine for recognition and phagocytosis of erythrocytes,” Infection and Immunity, vol. 73, no. 6, pp. 3422–3430, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Chévez, I. Iturbe-Alessio, M. Segura, and D. Corona, “Phagocytosis of human erythrocytes by Entamoeba histolytica,” Archivos de Investigacion Medica, vol. 2, supplement 2, pp. 275–286, 1972. View at Google Scholar · View at Scopus
  22. G. B. Bailey, D. B. Day, C. Nokkaew, and C. C. Harper, “Stimulation by target cell membrane lipid of actin polymerization and phagocytosis by Entamoeba histolytica,” Infection and Immunity, vol. 55, no. 8, pp. 1848–1853, 1987. View at Google Scholar · View at Scopus
  23. J. A. Díaz-Gandarilla, C. Osorio-Trujillo, V. I. Hernández-Ramírez, and P. Talamás-Rohana, “PPAR activation induces m1 macrophage polarization via cPLA2-COX-2 inhibition, activating ros production against Leishmania mexicana,” BioMed Research International, vol. 2013, Article ID 215283, 13 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. C. D. Huston, D. R. Boettner, V. Miller-Sims, and W. A. Petri Jr., “Apoptotic killing and phagocytosis of host cells by the parasite Entamoeba histolytica,” Infection and Immunity, vol. 71, no. 2, pp. 964–972, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Espinosa-Cantellano, A. Gonzáles-Robles, B. Chávez et al., “Entamoeba dispar: ultrastructure, surface properties and cytopathic effect,” Journal of Eukaryotic Microbiology, vol. 45, no. 3, pp. 265–272, 1820. View at Google Scholar
  26. P. F. P. Pimenta, L. S. Diamond, and D. Mirelman, “Entamoeba histolytica Schaudinn, 1903 and Entamoeba dispar Brumpt, 1925: differences in their cell surfaces and in the bacteria-containing vacuoles,” Journal of Eukaryotic Microbiology, vol. 49, no. 3, pp. 209–219, 2002. View at Google Scholar · View at Scopus
  27. B. N. Mitra, T. Yasuda, S. Kobayashi, Y. Saito-Nakano, and T. Nozaki, “Differences in morphology of phagosomes and kinetics of acidification and degradation in phagosomes between the pathogenic Entamoeba histolytica and the non-pathogenic Entamoeba dispar,” Cell Motility and the Cytoskeleton, vol. 62, no. 2, pp. 84–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Chávez-Munguía, P. Talamás-Rohana, G. Castañón, L. Salazar-Villatoro, V. Hernández-Ramírez, and A. Martínez-Palomo, “Differences in cap formation between invasive Entamoeba histolytica and non-invasive Entamoeba dispar,” Parasitology Research, vol. 111, no. 1, pp. 215–221, 2012. View at Publisher · View at Google Scholar
  29. A. Sateriale, A. Vaithilingam, L. Donnelly, P. Miller, and C. D. Huston, “Feed-forward regulation of phagocytosis by Entamoeba histolytica,” Infection and Immunity, vol. 80, no. 12, pp. 4456–4462, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. I. W. Wilson, G. D. Weedall, and N. Hall, “Host-Parasite interactions in Entamoeba histolytica and Entamoeba dispar: what have we learned from their genomes?” Parasite Immunology, vol. 34, no. 2-3, pp. 90–99, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. L. F. Marchi, R. Sesti-Costa, M. D. C. Ignacchiti, S. Chedraoui-Silva, and B. Mantovani, “In vitro activation of mouse neutrophils by recombinant human interferon-gamma: increased phagocytosis and release of reactive oxygen species and pro-inflammatory cytokines,” International Immunopharmacology, vol. 18, no. 2, pp. 228–235, 2014. View at Publisher · View at Google Scholar
  32. A. A. Kettis, C. Jarstrand, and T. Urban, “The nitroblue tetrazolium (NBT) reduction of Entamoeba histolytica during endocytosis of E. coli and homologous antibodies,” Archivos de Investigacion Medica, vol. 13, supplement 3, pp. 261–264, 1982. View at Google Scholar · View at Scopus
  33. S. Kumar, L. M. Tripathi, and P. Sagar, “Oxido-reductive functions of Entamoeba histolytica in relation to virulence,” Annals of Tropical Medicine and Parasitology, vol. 86, no. 3, pp. 239–248, 1992. View at Google Scholar · View at Scopus
  34. R. M. Mukhopadhyay and S. K. Chaudhuri, “Rapid in vitro test for determination of anti-amoebic activity,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 90, no. 2, pp. 189–191, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Bansal, R. Sehgal, Y. Chawla, R. C. Mahajan, and N. Malla, “In vitro activity of antiamoebic drugs against clinical isolates of Entamoeba histolytica and Entamoeba dispar,” Annals of Clinical Microbiology and Antimicrobials, vol. 3, article 27, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Sim, T.-S. Yong, S.-J. Park et al., “NADPH oxidase-derived reactive oxygen species-mediated activation of ERK1/2 is required for apoptosis of human neutrophils induced by Entamoeba histolytica,” Journal of Immunology, vol. 174, no. 7, pp. 4279–4288, 2005. View at Google Scholar · View at Scopus
  37. B. Diaz, G. Shani, I. Pass, D. Anderson, M. Quintavalle, and S. A. Courtneidge, “Tks5-dependent, nox-mediated generation of reactive oxygen species is necessary for invadopodia formation,” Science Signaling, vol. 2, no. 88, article ra53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Gianni, N. Taulet, C. DerMardirossian, and G. M. Bokoch, “c-Src-mediated phosphorylation of NoxA1 and Tks4 induces the Reactive Oxygen Species (ROS)-dependent formation of functional invadopodia in human colon cancer cells,” Molecular Biology of the Cell, vol. 21, no. 23, pp. 4287–4298, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. O. Destaing, M. R. Block, E. Planus, and C. Albiges-Rizo, “Invadosome regulation by adhesion signaling,” Current Opinion in Cell Biology, vol. 23, no. 5, pp. 597–606, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. L. R. Boateng and A. Huttenlocher, “Spatiotemporal regulation of Src and its substrates at invadosomes,” European Journal of Cell Biology, vol. 91, no. 11-12, pp. 878–888, 2012. View at Publisher · View at Google Scholar · View at Scopus