Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 639058, 14 pages
http://dx.doi.org/10.1155/2014/639058
Review Article

Impact of the Prolymphangiogenic Crosstalk in the Tumor Microenvironment on Lymphatic Cancer Metastasis

1Department of Ophthalmology, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
2Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany

Received 11 April 2014; Accepted 14 August 2014; Published 1 September 2014

Academic Editor: Zhen Chen

Copyright © 2014 Simona L. Schlereth et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Shields, M. Borsetti, H. Rigby et al., “Lymphatic density and metastatic spread in human malignant melanoma,” British Journal of Cancer, vol. 90, no. 3, pp. 693–700, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. N. J. P. Beasley, R. Prevo, S. Banerji et al., “Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer,” Cancer Research, vol. 62, no. 5, pp. 1315–1320, 2002. View at Google Scholar · View at Scopus
  3. M. W. Beckmann, G. Mehlhorn, F. Thiel, C. Breuel, P. A. Fasching, and S. Ackermann, “Therapiefortschritte beim primären Zervixkarzinom,” Deutsches Ärzteblatt, vol. 102, pp. A979–A986, 2005. View at Google Scholar
  4. E. Sundlisæter, A. Dicko, P. Ø. Sakariassen, K. Sondenaa, P. Ø. Enger, and R. Bjerkvig, “Lymphangiogenesis in colorectal cancer—prognostic and therapeutic aspects,” International Journal of Cancer, vol. 121, no. 7, pp. 1401–1409, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Bruce, D. C. Carter, and J. Fraser, “Patterns of recurrent disease in breast cancer,” The Lancet, vol. 1, no. 7644, pp. 433–435, 1970. View at Google Scholar · View at Scopus
  6. L. M. Heindl, C. Hofmann-Rummelt, W. Adler et al., “Prognostic significance of tumor-associated lymphangiogenesis in malignant melanomas of the conjunctiva,” Ophthalmology, vol. 118, no. 12, pp. 2351–2360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. L. M. Heindl, C. Hofmann-Rummelt, W. Adler et al., “Tumor-associated lymphangiogenesis in the development of conjunctival melanoma,” Investigative Ophthalmology & Visual Science, vol. 52, no. 10, pp. 7074–7083, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. L. M. Heindl, C. Hofmann-Rummelt, W. Adler et al., “Tumor-associated lymphangiogenesis in the development of conjunctival squamous cell carcinoma,” Ophthalmology, vol. 117, no. 4, pp. 649–658, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. L. M. Heindl, F. Bucher, G. O. Naumann, and C. Cursiefen, “Lack of ciliary body lymphatics in iridociliary melanocytoma,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 252, pp. 169–171, 2014. View at Google Scholar
  10. L. M. Heindl, T. N. Hofmann, W. Adler et al., “Intraocular tumor-associated lymphangiogenesis: a novel prognostic factor for ciliary body melanomas with extraocular extension?” Ophthalmology, vol. 117, no. 2, pp. 334–342, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. L. M. Heindl, T. N. Hofmann, H. L. J. Knorr et al., “Intraocular lymphangiogenesis in malignant melanomas of the ciliary body with extraocular extension,” Investigative Ophthalmology & Visual Science, vol. 50, no. 5, pp. 1988–1995, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. L. M. Heindl, T. N. Hofmann, F. Schrödl, L. M. Holbach, F. E. Kruse, and C. Cursiefen, “Intraocular lymphatics in ciliary body melanomas with extraocular extension: functional for lymphatic spread?” Archives of Ophthalmology, vol. 128, no. 8, pp. 1001–1008, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. L. M. Heindl, F. Schrödl, E. Lütjen-Drecoll, and C. Cursiefen, “Ciliary body lymphangiogenesis,” Ophthalmology, vol. 120, no. 7, pp. e41–e42, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Nagahashi, S. Ramachandran, O. M. Rashid, and K. Takabe, “Lymphangiogenesis: a new player in cancer progression,” World Journal of Gastroenterology, vol. 16, no. 32, pp. 4003–4012, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Joukov, K. Pajusola, A. Kaipainen et al., “A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases,” The EMBO Journal, vol. 15, no. 2, pp. 290–298, 1996. View at Google Scholar · View at Scopus
  16. M. J. Karkkainen and T. V. Petrova, “Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis,” Oncogene, vol. 19, no. 49, pp. 5598–5605, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. S. F. Schoppmann, P. Birner, J. Stöckl et al., “Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis,” The American Journal of Pathology, vol. 161, no. 3, pp. 947–956, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Cursiefen, L. Chen, L. P. Borges et al., “VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment,” Journal of Clinical Investigation, vol. 113, no. 7, pp. 1040–1050, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Maruyama, M. Ii, C. Cursiefen et al., “Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages,” The Journal of Clinical Investigation, vol. 115, no. 9, pp. 2363–2372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. J. C. Becker, M. H. Andersen, D. Schrama, and P. Thor Straten, “Immune-suppressive properties of the tumor microenvironment,” Cancer Immunology, Immunotherapy, vol. 62, no. 7, pp. 1137–1148, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Ungefroren, S. Sebens, D. Seidl, H. Lehnert, and R. Hass, “Interaction of tumor cells with the microenvironment,” Cell Communication and Signaling, vol. 9, article 18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Ferrara, K. J. Hillan, H.-P. Gerber, and W. Novotny, “Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer,” Nature Reviews Drug Discovery, vol. 3, no. 5, pp. 391–400, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. S. A. Stacker, C. Caesar, M. E. Baldwin et al., “VEGF-D promotes the metastatic spread of tumor cells via the lymphatics,” Nature Medicine, vol. 7, no. 2, pp. 186–191, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. T. V. Byzova, C. K. Goldman, J. Jankau et al., “Adenovirus encoding vascular endothelial growth factor-D induces tissue-specific vascular patterns in vivo,” Blood, vol. 99, no. 12, pp. 4434–4442, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Tsurusaki, S. Kanda, H. Sakai et al., “Vascular endothelial growth factor-C expression in human prostatic carcinoma and its relationship to lymph node metastasis,” British Journal of Cancer, vol. 80, no. 1-2, pp. 309–313, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Yonemura, Y. Endo, H. Fujita et al., “Role of vascular endothelial growth factor C expression in the development of lymph node metastasis in gastric cancer,” Clinical Cancer Research, vol. 5, no. 7, pp. 1823–1829, 1999. View at Google Scholar · View at Scopus
  27. K. Akagi, Y. Ikeda, M. Miyazaki et al., “Vascular endothelial growth factor-C (VEGF-C) expression in human colorectal cancer tissues,” The British Journal of Cancer, vol. 83, no. 7, pp. 887–891, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Niki, S. Iba, M. Tokunou, T. Yamada, Y. Matsuno, and S. Hirohashi, “Expression of vascular endothelial growth factors A, B, C, and D and their relationships to lymph node status in lung adenocarcinoma,” Clinical Cancer Research, vol. 6, no. 6, pp. 2431–2439, 2000. View at Google Scholar · View at Scopus
  29. I. Hashimoto, J. Kodama, N. Seki et al., “Vascular endothelial growth factor-C expression and its relationship to pelvic lymph node status in invasive cervical cancer,” British Journal of Cancer, vol. 85, no. 1, pp. 93–97, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Schietroma, F. Cianfarani, P. M. Lacal et al., “Vascular endothelial growth factor-C expression correlates with lymph node localization of human melanoma metastases,” Cancer, vol. 98, no. 4, pp. 789–797, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Skobe, T. Hawighorst, D. G. Jackson et al., “Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis,” Nature Medicine, vol. 7, no. 2, pp. 192–198, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Issa, T. X. Le, A. N. Shoushtari, J. D. Shields, and M. A. Swartz, “Vascular endothelial growth factor-C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype,” Cancer Research, vol. 69, no. 1, pp. 349–357, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Quagliata, S. Klusmeier, N. Cremers et al., “Inhibition of VEGFR-3 activation in tumor-draining lymph nodes suppresses the outgrowth of lymph node metastases in the MT-450 syngeneic rat breast cancer model,” Clinical & Experimental Metastasis, vol. 31, pp. 351–365, 2014. View at Google Scholar
  34. R. S. Saad, L. Kordunsky, Y. L. Liu, K. L. Denning, H. A. Kandil, and J. F. Silverman, “Lymphatic microvessel density as prognostic marker in colorectal cancer,” Modern Pathology, vol. 19, no. 10, pp. 1317–1323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Hirakawa, S. Kodama, R. Kunstfeld, K. Kajiya, L. F. Brown, and M. Detmar, “VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis,” Journal of Experimental Medicine, vol. 201, no. 7, pp. 1089–1099, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Tammela and K. Alitalo, “Lymphangiogenesis: molecular mechanisms and future promise,” Cell, vol. 140, no. 4, pp. 460–476, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. S. S. Dadras, B. Lange-Asschenfeldt, P. Velasco et al., “Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes,” Modern Pathology, vol. 18, no. 9, pp. 1232–1242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Holash, P. C. Maisonpierre, D. Compton et al., “Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,” Science, vol. 284, no. 5422, pp. 1994–1998, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Huang, A. Bhat, G. Woodnutt, and R. Lappe, “Targeting the ANGPT-TIE2 pathway in malignancy,” Nature Reviews Cancer, vol. 10, no. 8, pp. 575–585, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Sun, “Angiogenesis in metastatic colorectal cancer and the benefits of targeted therapy,” Journal of Hematology & Oncology, vol. 5, article 63, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Davis, T. H. Aldrich, P. F. Jones et al., “Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning,” Cell, vol. 87, no. 7, pp. 1161–1169, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Scavelli, A. Vacca, G. Di Pietro, F. Dammacco, and D. Ribatti, “Crosstalk between angiogenesis and lymphangiogenesis in tumor progression,” Leukemia, vol. 18, no. 6, pp. 1054–1058, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. P. C. Maisonpierre, C. Suri, P. F. Jones et al., “Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis,” Science, vol. 277, no. 5322, pp. 55–60, 1997. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Schulz, C. Fischer, K. M. Detjen et al., “Angiopoietin-2 drives lymphatic metastasis of pancreatic cancer,” FASEB Journal, vol. 25, no. 10, pp. 3325–3335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Cao, M. A. Björndahl, P. Religa et al., “PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis,” Cancer Cell, vol. 6, no. 4, pp. 333–345, 2006. View at Google Scholar
  46. L. K. Chang, G. Garcia-Cardeña, F. Farnebo et al., “Dose-dependent response of FGF-2 for lymphangiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 32, pp. 11658–11663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. C. M. Yoon, B. S. Hong, H. G. Moon et al., “Sphingosine-1-phosphate promotes lymphangiogenesis by stimulating S1P1/Gi/PLC/Ca2+ signaling pathways,” Blood, vol. 112, no. 4, pp. 1129–1138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Cao, M. A. Björndahl, M. I. Gallego et al., “Hepatocyte growth factor is a lymphangiogenic factor with an indirect mechanism of action,” Blood, vol. 107, no. 9, pp. 3531–3536, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Podgrabinska, P. Braun, P. Velasco et al., “Molecular characterization of lymphatic endothelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 25, pp. 16069–16074, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Miyahara, J.-I. Tanuma, K. Sugihara, and I. Semba, “Tumor lymphangiogenesis correlates with lymph node metastasis and clinicopathologic parameters in oral squamous cell carcinoma,” Cancer, vol. 110, no. 6, pp. 1287–1294, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Sasahira, N. Ueda, K. Yamamoto et al., “Prox1 and FOXC2 act as regulators of lymphangiogenesis and angiogenesis in oral squamous cell carcinoma,” PloS ONE, vol. 9, Article ID e92534, 2014. View at Google Scholar
  52. J. D. Shields, M. E. Fleury, C. Yong, A. A. Tomei, G. J. Randolph, and M. A. Swartz, “Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling,” Cancer Cell, vol. 11, no. 6, pp. 526–538, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. P. J. Sarvaiya, D. Guo, I. Ulasov, P. Gabikian, and M. S. Lesniak, “Chemokines in tumor progression and metastasis,” Oncotarget, vol. 4, pp. 2171–2185, 2013. View at Google Scholar
  54. R. M. Steinman, M. Pack, and K. Inaba, “Dendritic cells in the T-cell areas of lymphoid organs,” Immunological Reviews, vol. 156, pp. 25–37, 1997. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Ding, Y. Shimada, M. Maeda et al., “Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma,” Clinical Cancer Research, vol. 9, no. 9, pp. 3406–3412, 2003. View at Google Scholar · View at Scopus
  56. H. Takeuchi, A. Fujimoto, M. Tanaka, T. Yamano, E. Hsueh, and D. S. B. Hoon, “CCL21 chemokine regulates chemokine receptor CCR7 bearing malignant melanoma cells,” Clinical Cancer Research, vol. 10, no. 7, pp. 2351–2358, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Mashino, N. Sadanaga, H. Yamaguchi et al., “Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma,” Cancer Research, vol. 62, no. 10, pp. 2937–2941, 2002. View at Google Scholar · View at Scopus
  58. S. López-Giral, N. E. Quintana, M. Cabrerizo et al., “Chemokine receptors that mediate B cell homing to secondary lymphoid tissues are highly expressed in B cell chronic lymphocytic leukemia and non-Hodgkin lymphomas with widespread nodular dissemination,” Journal of Leukocyte Biology, vol. 76, no. 2, pp. 462–471, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Li, F. Liu, L. Sun et al., “Chemokine receptor 7 promotes cell migration and adhesion in metastatic squamous cell carcinoma of the head and neck by activating integrin αvβ3,” International Journal of Molecular Medicine, vol. 27, no. 5, pp. 679–687, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Li, X. Qiu, S. Zhang, Q. Zhang, and E. Wang, “Hypoxia induced CCR7 expression via HIF-1α and HIF-2α correlates with migration and invasion in lung cancer cells,” Cancer Biology and Therapy, vol. 8, no. 4, pp. 322–330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Sui, P. Hu, T. Zhang, X. Zhang, Q. Liu, and J. Du, “High expression of CXCR-2 correlates with lymph node metastasis and predicts unfavorable prognosis in resected esophageal carcinoma,” Medical Oncology, vol. 31, article 809, 2014. View at Google Scholar
  62. A. Müller, B. Homey, H. Soto et al., “Involvement of chemokine receptors in breast cancer metastasis,” Nature, vol. 410, no. 6824, pp. 50–56, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Ying, Q. Xu, G. Zhang, B. Liu, and L. Zhu, “The expression of CXCL12 and CXCR4 in gastric cancer and their correlation to lymph node metastasis,” Medical Oncology, vol. 29, no. 3, pp. 1716–1722, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Arya, H. R. H. Patel, C. McGurk et al., “The importance of the CXCL12-CXCR4 chemokine ligand-receptor interaction in prostate cancer metastasis,” Journal of Experimental Therapeutics and Oncology, vol. 4, no. 4, pp. 291–303, 2004. View at Google Scholar · View at Scopus
  65. S. Scala, P. Giuliano, P. A. Ascierto et al., “Human melanoma metastases express functional CXCR4,” Clinical Cancer Research, vol. 12, no. 8, pp. 2427–2433, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Franco, G. Botti, M. Mascolo et al., “CXCR4-CXCL12 and VEGF correlate to uveal melanoma progression,” Frontiers in Bioscience—Elite, vol. 2, no. 1, pp. 13–21, 2010. View at Google Scholar · View at Scopus
  67. C. Savarin-Vuaillat and R. M. Ransohoff, “Chemokines and chemokine receptors in neurological disease: raise, retain, or reduce?” Neurotherapeutics, vol. 4, no. 4, pp. 590–601, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. T. Murakami, W. Maki, A. R. Cardones et al., “Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells,” Cancer Research, vol. 62, no. 24, pp. 7328–7334, 2002. View at Google Scholar · View at Scopus
  69. B.-C. Zhao, Z.-J. Wang, W.-Z. Mao et al., “CXCR4/SDF-1 axis is involved in lymph node metastasis of gastric carcinoma,” World Journal of Gastroenterology, vol. 17, no. 19, pp. 2389–2396, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. X. Sun, J. Wang, C. E. Shelburne et al., “Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo,” Journal of Cellular Biochemistry, vol. 89, no. 3, pp. 462–473, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Kawada, M. Sonoshita, H. Sakashita et al., “Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes,” Cancer Research, vol. 64, no. 11, pp. 4010–4017, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Campisi, “Aging, cellular senescence, and cancer,” Annual Review of Physiology, vol. 75, pp. 685–705, 2013. View at Publisher · View at Google Scholar · View at Scopus
  73. P. Castro, D. Giri, D. Lamb, and M. Ittmann, “Cellular senescence in the pathogenesis of benign prostatic hyperplasia,” The Prostate, vol. 55, no. 1, pp. 30–38, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Collado and M. Serrano, “Senescence in tumours: evidence from mice and humans,” Nature Reviews Cancer, vol. 10, no. 1, pp. 51–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. C. Michaloglou, L. C. W. Vredeveld, M. S. Soengas et al., “BRAFE600-associated senescence-like cell cycle arrest of human naevi,” Nature, vol. 436, no. 7051, pp. 720–724, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. L. C. W. Vredeveld, P. A. Possik, M. A. Smit et al., “Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis,” Genes and Development, vol. 26, no. 10, pp. 1055–1069, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. M. C. Velarde, M. Demaria, and J. Campisi, “Senescent cells and their secretory phenotype as targets for cancer therapy,” Interdisciplinary Topics in Gerontology, vol. 38, pp. 17–27, 2013. View at Publisher · View at Google Scholar · View at Scopus
  78. W. Xue, L. Zender, C. Miething et al., “Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas,” Nature, vol. 445, no. 7128, pp. 656–660, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Rajagopalan and E. O. Long, “Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 50, pp. 20596–20601, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. E. Alspach, Y. Fu, and S. A. Stewart, “Senescence and the pro-tumorigenic stroma,” Critical Reviews in Oncogenesis, vol. 18, pp. 549–558, 2013. View at Google Scholar
  81. R. Kalluri, “Basement membranes: structure, assembly and role in tumour angiogenesis,” Nature Reviews Cancer, vol. 3, no. 6, pp. 422–433, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. R. Kalluri and M. Zeisberg, “Fibroblasts in cancer,” Nature Reviews Cancer, vol. 6, no. 5, pp. 392–401, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. M. M. Mueller and N. E. Fusenig, “Friends or foes—bipolar effects of the tumour stroma in cancer,” Nature Reviews Cancer, vol. 4, no. 11, pp. 839–849, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. M. M. Mueller, T. Werbowetski, and R. F. Del Maestro, “Soluble factors involved in glioma invasion,” Acta Neurochirurgica, vol. 145, no. 11, pp. 999–1008, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. W. G. Stetler-Stevenson and A. E. Yu, “Proteases in invasion: matrix metalloproteinases,” Seminars in Cancer Biology, vol. 11, no. 2, pp. 143–152, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. F. Mbeunkui and D. J. Johann Jr., “Cancer and the tumor microenvironment: a review of an essential relationship,” Cancer Chemotherapy and Pharmacology, vol. 63, no. 4, pp. 571–582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. L. F. Brown, A. J. Guidi, S. J. Schnitt et al., “Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast,” Clinical Cancer Research, vol. 5, no. 5, pp. 1041–1056, 1999. View at Google Scholar · View at Scopus
  88. Z. Werb, “ECM and cell surface proteolysis: regulating cellular ecology,” Cell, vol. 91, no. 4, pp. 439–442, 1997. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Krstic and J. F. Santibanez, “Transforming growth factor-beta and matrix metalloproteinases: functional interactions in tumor stroma-infiltrating myeloid cells,” The Scientific World Journal, vol. 2014, Article ID 521754, 14 pages, 2014. View at Publisher · View at Google Scholar
  90. T. C. Laurent and J. R. E. Fraser, “Hyaluronan,” The FASEB Journal, vol. 6, no. 7, pp. 2397–2404, 1992. View at Google Scholar · View at Scopus
  91. S. Banerji, J. Ni, S.-X. Wang et al., “LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan,” Journal of Cell Biology, vol. 144, no. 4, pp. 789–801, 1999. View at Publisher · View at Google Scholar · View at Scopus
  92. N. Itano, L. Zhuo, and K. Kimata, “Impact of the hyaluronan-rich tumor microenvironment on cancer initiation and progression,” Cancer Science, vol. 99, no. 9, pp. 1720–1725, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. T. D. Tlsty and P. W. Hein, “Know thy neighbor: stromal cells can contribute oncogenic signals,” Current Opinion in Genetics and Development, vol. 11, no. 1, pp. 54–59, 2001. View at Publisher · View at Google Scholar · View at Scopus
  94. B. Elenbaas and R. A. Weinberg, “Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation,” Experimental Cell Research, vol. 264, no. 1, pp. 169–184, 2001. View at Publisher · View at Google Scholar · View at Scopus
  95. P. Garin-Chesa, L. J. Old, and W. J. Rettig, “Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 18, pp. 7235–7239, 1990. View at Publisher · View at Google Scholar · View at Scopus
  96. D. Lazard, X. Sastre, M. G. Frid, M. A. Glukhova, J.-P. Thiery, and V. E. Koteliansky, “Expression of smooth muscle-specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 3, pp. 999–1003, 1993. View at Publisher · View at Google Scholar · View at Scopus
  97. H. Y. Chang, J.-T. Chi, S. Dudoit et al., “Diversity, topographic differentiation, and positional memory in human fibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 20, pp. 12877–12882, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Shimoda, K. T. Mellody, and A. Orimo, “Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression,” Seminars in Cell and Developmental Biology, vol. 21, no. 1, pp. 19–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Bauer, G. Su, C. Casper, R. He, W. Rehrauer, and A. Friedl, “Heterogeneity of gene expression in stromal fibroblasts of human breast carcinomas and normal breast,” Oncogene, vol. 29, no. 12, pp. 1732–1740, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. O. de Wever, Q.-D. Nguyen, L. van Hoorde et al., “Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac,” The FASEB Journal, vol. 18, no. 9, pp. 1016–1018, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. O. de Wever and M. Mareel, “Role of tissue stroma in cancer cell invasion,” The Journal of Pathology, vol. 200, no. 4, pp. 429–447, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Semba, Y. Kodama, K. Ohnuma et al., “Direct cancer-stromal interaction increases fibroblast proliferation and enhances invasive properties of scirrhous-type gastric carcinoma cells,” British Journal of Cancer, vol. 101, no. 8, pp. 1365–1373, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. D. Liao, Y. Luo, D. Markowitz, R. Xiang, and R. A. Reisfeld, “Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model,” PLoS ONE, vol. 4, no. 11, Article ID e7965, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Orimo, P. B. Gupta, D. C. Sgroi et al., “Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion,” Cell, vol. 121, no. 3, pp. 335–348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  105. Y. Zhang, H. Tang, J. Cai et al., “Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carcinoma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion,” Cancer Letters, vol. 303, no. 1, pp. 47–55, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. B. Pula, A. Jethon, A. Piotrowska et al., “Podoplanin expression by cancer-associated fibroblasts predicts poor outcome in invasive ductal breast carcinoma,” Histopathology, vol. 59, no. 6, pp. 1249–1260, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. E. L. Spaeth, J. L. Dembinski, A. K. Sasser et al., “Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression,” PLoS ONE, vol. 4, no. 4, Article ID e4992, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. J. Guan and J. Chen, “Mesenchymal stem cells in the tumor microenvironment,” Biomedical Reports, vol. 1, pp. 517–521, 2013. View at Google Scholar
  109. B. M. Beckermann, G. Kallifatidis, A. Groth et al., “VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma,” British Journal of Cancer, vol. 99, no. 4, pp. 622–631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. K. Buttler, M. Badar, V. Seiffart et al., “De novo hem- and lymphangiogenesis by endothelial progenitor and mesenchymal stem cells in immunocompetent mice,” Cellular and Molecular Life Sciences, vol. 71, no. 8, pp. 1513–1527, 2014. View at Publisher · View at Google Scholar · View at Scopus
  111. K. Kajiya, S. Hirakawa, B. Ma, I. Drinnenberg, and M. Detmar, “Hepatocyte growth factor promotes lymphatic vessel formation and function,” The EMBO Journal, vol. 24, no. 16, pp. 2885–2895, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. M. T. Dellinger and R. A. Brekken, “Phosphorylation of Akt and ERK1/2 is required for VEGF-A/VEGFR2-induced proliferation and migration of lymphatic endothelium,” PLoS ONE, vol. 6, no. 12, Article ID e28947, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Shinriki, H. Jono, M. Ueda et al., “Interleukin-6 signalling regulates vascular endothelial growth factor-C synthesis and lymphangiogenesis in human oral squamous cell carcinoma,” The Journal of Pathology, vol. 225, no. 1, pp. 142–150, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. Y. H. Huang, H. Y. Yang, Y. F. Hsu, P. T. Chiu, G. Ou, and M. J. Hsu, “Src contributes to IL6-induced vascular endothelial growth factor-C expression in lymphatic endothelial cells,” Angiogenesis, vol. 17, no. 2, pp. 407–418, 2014. View at Publisher · View at Google Scholar
  115. C. Conrad, H. Niess, R. Huss et al., “Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo,” Circulation, vol. 119, no. 2, pp. 281–289, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. A. E. Karnoub, A. B. Dash, A. P. Vo et al., “Mesenchymal stem cells within tumour stroma promote breast cancer metastasis,” Nature, vol. 449, no. 7162, pp. 557–563, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. M. B. Fuertes, A. K. Kacha, J. Kline et al., “Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells,” The Journal of Experimental Medicine, vol. 208, no. 10, pp. 2005–2016, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. T. F. Gajewski, H. Schreiber, and Y. X. Fu, “Innate and adaptive immune cells in the tumor microenvironment,” Nature Immunology, vol. 14, pp. 1014–1022, 2013. View at Publisher · View at Google Scholar
  119. K. Steinbrink, M. Wölfl, H. Jonuleit, J. Knop, and A. H. Enk, “Induction of tolerance by IL-10-treated dendritic cells,” The Journal of Immunology, vol. 159, no. 10, pp. 4772–4780, 1997. View at Google Scholar · View at Scopus
  120. K. Palucka and J. Banchereau, “Cancer immunotherapy via dendritic cells,” Nature Reviews Cancer, vol. 12, no. 4, pp. 265–277, 2012. View at Publisher · View at Google Scholar · View at Scopus
  121. N. J. Bahlis, A. M. King, D. Kolonias et al., “CD28-mediated regulation of multiple myeloma cell proliferation and survival,” Blood, vol. 109, no. 11, pp. 5002–5010, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Wei, I. Kryczek, L. Zou et al., “Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma,” Cancer Research, vol. 65, no. 12, pp. 5020–5026, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. T. J. Curiel, P. Cheng, P. Mottram et al., “Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer,” Cancer Research, vol. 64, no. 16, pp. 5535–5538, 2004. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Thiel, R. Kesselring, R. Pries, N. Wittkopf, A. Puzik, and B. Wollenberg, “Plasmacytoid dendritic cell subpopulations in head and neck squamous cell carcinoma,” Oncology Reports, vol. 26, no. 3, pp. 615–620, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. I. Treilleux, J.-Y. Blay, N. Bendriss-Vermare et al., “Dendritic cell infiltration and prognosis of early stage breast cancer,” Clinical Cancer Research, vol. 10, no. 22, pp. 7466–7474, 2004. View at Publisher · View at Google Scholar · View at Scopus
  126. R.-C. Ji, “Macrophages are important mediators of either tumor- or inflammation-induced lymphangiogenesis,” Cellular and Molecular Life Sciences, vol. 69, no. 6, pp. 897–914, 2012. View at Publisher · View at Google Scholar · View at Scopus
  127. S. Sozzani, M. Rusnati, E. Riboldi, S. Mitola, and M. Presta, “Dendritic cell-endothelial cell cross-talk in angiogenesis,” Trends in Immunology, vol. 28, no. 9, pp. 385–392, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. E. Gottfried, M. Kreutz, S. Haffner et al., “Differentiation of human tumour-associated dendritic cells into endothelial-like cells: an alternative pathway of tumour angiogenesis,” Scandinavian Journal of Immunology, vol. 65, no. 4, pp. 329–335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  129. J. R. Conejo-Garcia, F. Benencia, M.-C. Courreges et al., “Tumor-infiltrating dendritic cell precursors recruited by a β-defensin contribute to vasculogenesis under the influence of Vegf-A,” Nature Medicine, vol. 10, no. 9, pp. 950–958, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. D. I. Gabrilovich, T. Ishida, S. Nadaf, J. E. Ohm, and D. P. Carbone, “Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function,” Clinical Cancer Research, vol. 5, no. 10, pp. 2963–2970, 1999. View at Google Scholar · View at Scopus
  131. L. Chen, P. Hamrah, C. Cursiefen et al., “Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity,” Nature Medicine, vol. 10, no. 8, pp. 813–815, 2004. View at Publisher · View at Google Scholar · View at Scopus
  132. M. Darash-Yahana, E. Pikarsky, R. Abramovitch et al., “Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis,” FASEB Journal, vol. 18, no. 11, pp. 1240–1242, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. H. Dong, S. E. Strome, D. R. Salomao et al., “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nature Medicine, vol. 8, no. 8, pp. 793–800, 2002. View at Google Scholar
  134. J. A. Brown, D. M. Dorfman, F.-R. Ma et al., “Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production,” Journal of Immunology, vol. 170, no. 3, pp. 1257–1266, 2003. View at Publisher · View at Google Scholar · View at Scopus
  135. L. Chen, “Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity,” Nature Reviews Immunology, vol. 4, no. 5, pp. 336–347, 2004. View at Publisher · View at Google Scholar · View at Scopus
  136. W. Yang, H. Li, P. W. Chen et al., “PD-L1 expression on human ocular cells and its possible role in regulating immune-mediated ocular inflammation,” Investigative Ophthalmology and Visual Science, vol. 50, no. 1, pp. 273–280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. S. T. Haile, J. J. Bosch, N. I. Agu et al., “Tumor cell programmed death ligand 1-mediated T cell suppression is overcome by coexpression of CD80,” Journal of Immunology, vol. 186, no. 12, pp. 6822–6829, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. A. S. Mansfield, P. Heikkila, K. von Smitten, J. Vakkila, and M. Leidenius, “Metastasis to sentinel lymph nodes in breast cancer is associated with maturation arrest of dendritic cells and poor co-localization of dendritic cells and CD8+ T cells,” Virchows Archiv, vol. 459, no. 4, pp. 391–398, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. M. E. Polak, P. Johnson, S. Di Palma et al., “Presence and maturity of dendritic cells in melanoma lymph node metastases,” The Journal of Pathology, vol. 207, no. 1, pp. 83–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  140. A. Kusume, T. Sasahira, Y. Luo et al., “Suppression of dendritic cells by HMGB1 is associated with lymph node metastasis of human colon cancer,” Pathobiology, vol. 76, no. 4, pp. 155–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. S. Ohashi, S. Okamura, F. Urano, and M. Maeda, “Clinicopathological variables associated with lymph node metastasis in submucosal invasive gastric cancer,” Gastric Cancer, vol. 10, no. 4, pp. 241–250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. W. Vermi, A. Micheletti, S. Lonardi et al., “slanDCs selectively accumulate in carcinoma-draining lymph nodes and marginate metastatic cells,” Nature Communications, vol. 5, article 3029, 2014. View at Publisher · View at Google Scholar
  143. F. G. Gomes, F. Nedel, A. M. Alves, J. E. Nör, and S. B. C. Tarquinio, “Tumor angiogenesis and lymphangiogenesis: tumor/endothelial crosstalk and cellular/microenvironmental signaling mechanisms,” Life Sciences, vol. 92, no. 2, pp. 101–107, 2013. View at Publisher · View at Google Scholar · View at Scopus
  144. C. E. Lewis and J. W. Pollard, “Distinct role of macrophages in different tumor microenvironments,” Cancer Research, vol. 66, no. 2, pp. 605–612, 2006. View at Publisher · View at Google Scholar · View at Scopus
  145. V. Riabov, A. Gudima, N. Wang, A. Mickley, A. Orekhov, and J. Kzhyshkowska, “Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis,” Frontiers in Physiology, vol. 5, article 75, 2014. View at Google Scholar
  146. D. Kerjaschki, “The crucial role of macrophages in lymphangiogenesis,” The Journal of Clinical Investigation, vol. 115, no. 9, pp. 2316–2319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  147. K. Schledzewski, M. Falkowski, G. Moldenhauer et al., “Lympathic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macropahages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis,” Journal of Pathology, vol. 209, no. 1, pp. 67–77, 2006. View at Publisher · View at Google Scholar · View at Scopus
  148. A. Zumsteg, V. Baeriswyl, N. Imaizumi, R. Schwendener, C. Rüegg, and G. Christofori, “Myeloid cells contribute to tumor lymphangiogenesis,” PLoS ONE, vol. 4, no. 9, Article ID e7067, 2009. View at Publisher · View at Google Scholar · View at Scopus
  149. I. H. G. Bronkhorst, L. V. Ly, E. S. Jordanova et al., “Detection of M2-macrophages in uveal melanoma and relation with survival,” Investigative Ophthalmology & Visual Science, vol. 52, no. 2, pp. 643–650, 2011. View at Publisher · View at Google Scholar · View at Scopus
  150. R. D. Leek, C. E. Lewis, R. Whitehouse, M. Greenall, J. Clarke, and A. L. Harris, “Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma,” Cancer Research, vol. 56, no. 20, pp. 4625–4629, 1996. View at Google Scholar · View at Scopus
  151. A. Nishie, M. Ono, T. Shono et al., “Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas,” Clinical Cancer Research, vol. 5, no. 5, pp. 1107–1113, 1999. View at Google Scholar · View at Scopus
  152. H. Torisu, M. Ono, H. Kiryu et al., “Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: possible involvement of TNFalpha and IL-1alpha,” International Journal of Cancer, vol. 85, pp. 182–188, 2000. View at Google Scholar
  153. D. Moussai, H. Mitsui, J. S. Pettersen et al., “The human cutaneous squamous cell carcinoma microenvironment is characterized by increased lymphatic density and enhanced expression of macrophage-derived VEGF-C,” Journal of Investigative Dermatology, vol. 131, no. 1, pp. 229–236, 2011. View at Publisher · View at Google Scholar · View at Scopus
  154. M. S. Kluger and O. R. Colegio, “Lymphangiogenesis linked to VEGF-C from tumor-associated macrophages: accomplices to metastasis by cutaneous squamous cell carcinoma,” Journal of Investigative Dermatology, vol. 131, no. 1, pp. 17–19, 2011. View at Publisher · View at Google Scholar · View at Scopus
  155. L. V. Ly, A. Baghat, M. Versluis et al., “In aged mice, outgrowth of intraocular melanoma depends on proangiogenic M2-type macrophages,” Journal of Immunology, vol. 185, no. 6, pp. 3481–3488, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. T. Mäkitie, P. Summanen, A. Tarkkanen, and T. Kivelä, “Tumor-infiltrating macrophages (CD68+ cells) and prognosis in malignant uveal melanoma,” Investigative Ophthalmology and Visual Science, vol. 42, no. 7, pp. 1414–1421, 2001. View at Google Scholar · View at Scopus
  157. J. A. Nagy, E. Vasile, D. Feng et al., “Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis,” The Journal of Experimental Medicine, vol. 196, no. 11, pp. 1497–1506, 2002. View at Publisher · View at Google Scholar · View at Scopus
  158. O. Fainaru, N. Almog, C. W. Yung et al., “Tumor growth and angiogenesis are dependent on the presence of immature dendritic cells,” The FASEB Journal, vol. 24, no. 5, pp. 1411–1418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  159. F. Pagès, A. Berger, M. Camus et al., “Effector memory T cells, early metastasis, and survival in colorectal cancer,” New England Journal of Medicine, vol. 353, no. 25, pp. 2654–2666, 2005. View at Publisher · View at Google Scholar · View at Scopus
  160. J. Galon, A. Costes, F. Sanchez-Cabo et al., “Type, density, and location of immune cells within human colorectal tumors predict clinical outcome,” Science, vol. 313, no. 5795, pp. 1960–1964, 2006. View at Publisher · View at Google Scholar · View at Scopus
  161. F. Azimi, R. A. Scolyer, P. Rumcheva et al., “Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma,” Journal of Clinical Oncology, vol. 30, no. 21, pp. 2678–2683, 2012. View at Publisher · View at Google Scholar · View at Scopus
  162. B. Kreike, M. van Kouwenhove, H. Horlings et al., “Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas,” Breast Cancer Research, vol. 9, no. 5, article R65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  163. S. M. A. Mahmoud, E. C. Paish, D. G. Powe et al., “Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer,” Journal of Clinical Oncology, vol. 29, no. 15, pp. 1949–1955, 2011. View at Publisher · View at Google Scholar · View at Scopus
  164. L. Zhang, J. R. Conejo-Garcia, D. Katsaros et al., “Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer,” New England Journal of Medicine, vol. 348, no. 3, pp. 203–213, 2003. View at Publisher · View at Google Scholar · View at Scopus
  165. T. J. Curiel, G. Coukos, L. Zou et al., “Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival,” Nature Medicine, vol. 10, no. 9, pp. 942–949, 2004. View at Publisher · View at Google Scholar · View at Scopus
  166. W. Zou, “Immunosuppressive networks in the tumour environment and their therapeutic relevance,” Nature Reviews Cancer, vol. 5, no. 4, pp. 263–274, 2005. View at Publisher · View at Google Scholar · View at Scopus
  167. R. C. Taylor, A. Patel, K. S. Panageas, K. J. Busam, and M. S. Brady, “Tumor-infiltrating lymphocytes predict sentinel lymph node positivity in patients with cutaneous melanoma,” Journal of Clinical Oncology, vol. 25, no. 7, pp. 869–875, 2007. View at Publisher · View at Google Scholar · View at Scopus
  168. J.-Y. Shin, I.-H. Yoon, J.-S. Kim, B. Kim, and C.-G. Park, “Vascular endothelial growth factor-induced chemotaxis and IL-10 from T cells,” Cellular Immunology, vol. 256, no. 1-2, pp. 72–78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  169. A. Ruddell, P. Mezquita, K. A. Brandvold, A. Farr, and B. M. Iritani, “B lymphocyte-specific c-Myc expression stimulates early and functional expansion of the vasculature and lymphatics during lymphomagenesis,” the American Journal of Pathology, vol. 163, no. 6, pp. 2233–2245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  170. A. Ruddell, M. I. Harrell, M. Furuya, S. B. Kirschbaum, and B. M. Iritani, “B lymphocytes promote lymphogenous metastasis of lymphoma and melanoma,” Neoplasia, vol. 13, no. 8, pp. 748–757, 2011. View at Publisher · View at Google Scholar · View at Scopus
  171. M. I. Harrell, B. M. Iritani, and A. Ruddell, “Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis,” The American Journal of Pathology, vol. 170, no. 2, pp. 774–786, 2007. View at Publisher · View at Google Scholar · View at Scopus
  172. D. B. Mendel, A. D. Laird, X. Xin et al., “In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship,” Clinical Cancer Research, vol. 9, no. 1 I, pp. 327–337, 2003. View at Google Scholar · View at Scopus
  173. E. P. Rock, V. Goodman, J. X. Jiang et al., “Food and Drug Administration drug approval summary: sunitinib malate for the treatment of gastrointestinal stromal tumor and advanced renal cell carcinoma,” Oncologist, vol. 12, no. 1, pp. 107–113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  174. S. M. Wilhelm, C. Carter, L. Tang et al., “BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis,” Cancer Research, vol. 64, no. 19, pp. 7099–7109, 2004. View at Publisher · View at Google Scholar · View at Scopus
  175. R. C. Kane, A. T. Farrell, H. Saber et al., “Sorafenib for the treatment of advanced renal cell carcinoma,” Clinical Cancer Research, vol. 12, no. 24, pp. 7271–7278, 2006. View at Publisher · View at Google Scholar · View at Scopus
  176. X.-W. He, X. Yu, T. Liu, S.-Y. Yu, and D.-J. Chen, “Vector-based RNA interference against vascular endothelial growth factor-C inhibits tumor lymphangiogenesis and growth of colorectal cancer in vivo in mice,” Chinese Medical Journal, vol. 121, no. 5, pp. 439–444, 2008. View at Google Scholar · View at Scopus
  177. Z. Lui, Q. Ma, X. Wang, and Y. Zhang, “Inhibiting tumor growth of colorectal cancer by blocking the expression of vascular endothelial growth factor receptor 3 using interference vector-based RNA interference,” International Journal of Molecular Medicine, vol. 25, no. 1, pp. 59–64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  178. R. V. Frolov and S. Singh, “Celecoxib and ion channels: a story of unexpected discoveries,” European Journal of Pharmacology, vol. 730, pp. 61–71, 2014. View at Publisher · View at Google Scholar
  179. L. Wang, W. Chen, X. Xie, Y. He, and X. Bai, “Celecoxib inhibits tumor growth and angiogenesis in an orthotopic implantation tumor model of human colon cancer,” Experimental Oncology, vol. 30, no. 1, pp. 42–51, 2008. View at Google Scholar · View at Scopus
  180. H. Liu, Y. Yang, J. Xiao et al., “Inhibition of cyclooxygenase-2 suppresses lymph node metastasis via VEGF-C,” Anatomical Record, vol. 292, no. 10, pp. 1577–1583, 2009. View at Publisher · View at Google Scholar · View at Scopus
  181. S. Takahashi, “Vascular Endothelial Growth Factor (VEGF), VEGF receptors and their inhibitors for antiangiogenic tumor therapy,” Biological and Pharmaceutical Bulletin, vol. 34, no. 12, pp. 1785–1788, 2011. View at Publisher · View at Google Scholar · View at Scopus
  182. S. Yao and L. Chen, “Reviving exhausted T lymphocytes during chronic virus infection by B7-H1 blockade,” Trends in Molecular Medicine, vol. 12, no. 6, pp. 244–246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  183. S. Yao, Y. Zhu, and L. Chen, “Advances in targeting cell surface signalling molecules for immune modulation,” Nature Reviews Drug Discovery, vol. 12, no. 2, pp. 130–146, 2013. View at Publisher · View at Google Scholar · View at Scopus
  184. D. S. Chen and I. Mellman, “Oncology meets immunology: the cancer-immunity cycle,” Immunity, vol. 39, no. 1, pp. 1–10, 2013. View at Publisher · View at Google Scholar · View at Scopus
  185. O. Hamid and R. D. Carvajal, “Anti-programmed death-1 and anti-programmed death-ligand 1 antibodies in cancer therapy,” Expert Opinion on Biological Therapy, vol. 13, no. 6, pp. 847–861, 2013. View at Publisher · View at Google Scholar · View at Scopus
  186. L. H. Butterfield, “Dendritic cells in cancer immunotherapy clinical trials: are we making progress?” Frontiers in Immunology, vol. 4, article 454, 2013. View at Google Scholar
  187. S. A. Grupp, M. Kalos, D. Barrett et al., “Chimeric antigen receptor-modified T cells for acute lymphoid leukemia,” The New England Journal of Medicine, vol. 368, no. 16, pp. 1509–1518, 2013. View at Publisher · View at Google Scholar · View at Scopus
  188. R. J. Brentjens, I. Rivière, J. H. Park et al., “Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias,” Blood, vol. 118, no. 18, pp. 4817–4828, 2011. View at Publisher · View at Google Scholar · View at Scopus
  189. D. L. Porter, B. L. Levine, M. Kalos, A. Bagg, and C. H. June, “Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia,” New England Journal of Medicine, vol. 365, no. 8, pp. 725–733, 2011. View at Publisher · View at Google Scholar · View at Scopus
  190. O. S. Qureshi, Y. Zheng, K. Nakamura et al., “Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4,” Science, vol. 332, no. 6029, pp. 600–603, 2011. View at Publisher · View at Google Scholar · View at Scopus
  191. G. Q. Phan, J. C. Yang, R. M. Sherry et al., “Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8372–8377, 2003. View at Publisher · View at Google Scholar · View at Scopus
  192. P. Waterhouse, J. M. Penninger, E. Timms et al., “Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4,” Science, vol. 270, no. 5238, pp. 985–988, 1995. View at Publisher · View at Google Scholar · View at Scopus
  193. U. Grohmann, C. Orabona, F. Fallarino et al., “CTLA-4-Ig regulates tryptophan catabolism in vivo,” Nature Immunology, vol. 3, no. 11, pp. 1097–1101, 2002. View at Publisher · View at Google Scholar · View at Scopus
  194. M. Sasaki, H. Hasegawa, M. Kohno, A. Inoue, M. R. Ito, and S. Fujita, “Antagonist of secondary lymphoid-tissue chemokine (CCR ligand 21) prevents the development of chronic graft-versus-host disease in mice,” Journal of Immunology, vol. 170, no. 1, pp. 588–596, 2003. View at Publisher · View at Google Scholar · View at Scopus
  195. S. Schlereth, H. S. Lee, P. Khandelwal, and D. R. Saban, “Blocking CCR7 at the ocular surface impairs the pathogenic contribution of dendritic cells in allergic conjunctivitis,” The American Journal of Pathology, vol. 180, no. 6, pp. 2351–2360, 2012. View at Publisher · View at Google Scholar · View at Scopus
  196. Y. Shuyi, D. Juping, Z. Zhiqun et al., “A critical role of CCR7 in invasiveness and metastasis of SW620 colon cancer cell in vitro and in vivo,” Cancer Biology and Therapy, vol. 7, no. 7, pp. 1037–1043, 2008. View at Publisher · View at Google Scholar · View at Scopus
  197. F. E. Gonzalez, C. Ortiz, M. Reyes et al., “Melanoma cell lysate induces CCR7 expression and in vivo migration to draining lymph nodes of therapeutic human dendritic cells,” Immunology, vol. 142, no. 3, pp. 369–405, 2014. View at Google Scholar