Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 646347, 7 pages
http://dx.doi.org/10.1155/2014/646347
Research Article

Ghostman: Augmented Reality Application for Telerehabilitation and Remote Instruction of a Novel Motor Skill

1Human Interface Technology Laboratory Australia (HIT Lab AU), School of Engineering and ICT, University of Tasmania, Launceston, Tas 7250, Australia
2Active Work Laboratory, Faculty of Education, University of Tasmania, Launceston, Tas 7250, Australia
3School of Health Sciences, University of Tasmania, Launceston, Tas 7250, Australia
4Human Interface Technology Laboratory (HIT Lab), University of Washington, Seattle, WA 98195, USA

Received 28 January 2014; Revised 12 March 2014; Accepted 13 March 2014; Published 15 April 2014

Academic Editor: Alessandro De Mauro

Copyright © 2014 Winyu Chinthammit et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Levin, “Early mobilization speeds recovery,” Physician and Sportsmedicine, vol. 21, no. 8, pp. 70–74, 1993. View at Google Scholar · View at Scopus
  2. D. N. Mendelson and W. B. Schwartz, “The effects of aging and population growth on health care costs,” Health Affairs, vol. 12, no. 1, pp. 119–125, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. G. M. Jensen, J. Gwyer, K. F. Shepard, and L. M. Hack, “Expert practice in physical therapy,” Physical Therapy, vol. 80, no. 1, pp. 28–52, 2000. View at Google Scholar · View at Scopus
  4. R. A. Cooper, S. G. Fitzgerald, M. L. Boninger et al., “Telerehabilitation: expanding access to rehabilitation expertise,” Proceedings of the IEEE, vol. 89, no. 8, pp. 1174–1193, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. R. K. Bode, A. W. Heinemann, P. Semik, and T. Mallinson, “Relative importance of rehabilitation therapy characteristics on functional outcomes for persons with stroke,” Stroke, vol. 35, no. 11, pp. 2537–2542, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. W. K. Durfee, L. Savard, and S. Weinstein, “Technical feasibility of teleassessments for rehabilitation,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, no. 1, pp. 23–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Kumagai, J. Yamashita, O. Morikawa et al., “Distance education system for teaching manual skills in endoscopic paranasal sinus surgery using “HyperMirror” telecommunication interface,” in Proceedings of the IEEE Virtual Reality (VR '08), pp. 233–236, March 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. McNeill, L. Pokluda, S. McDonough, and J. Crosbie, “Immersive virtual reality for upper limb rehabilitation following stroke,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC '04), pp. 2783–2789, October 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Subramanian, L. A. Knaut, C. Beaudoin, B. J. McFadyen, A. G. Feldman, and M. F. Levin, “Virtual reality environments for post-stroke arm rehabilitation,” Journal of NeuroEngineering and Rehabilitation, vol. 4, article 20, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Burdea, V. Popescu, V. Hentz, and K. Colbert, “Virtual reality-based orthopedic telerehabilitation,” IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 3, pp. 430–432, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. M. K. Holden and E. Todorov, “Use of virtual environments in motor learning and rehabilitation,” in Handbook of Virtual Environments: Design, Implementation, and Applications, vol. 44, pp. 1–35, 2002. View at Google Scholar
  12. L. Piron, P. Tonin, F. Cortese et al., “Post-stroke arm motor telerehabilitation web-based,” in Proceedings of the 5th International Workshop on Virtual Rehabilitation (IWVR '06), pp. 145–148, August 2006. View at Scopus
  13. R. Kizony, P. L. Weiss, M. Shahar, and D. Rand, “TheraGame: a home based virtual reality rehabilitation system,” International Journal on Disability and Human Development, vol. 5, no. 3, pp. 265–270, 2006. View at Google Scholar · View at Scopus
  14. A. Alamri, J. Cha, M. Eid, and A. E. Saddik, “Evaluating the post-stroke patients progress using an augmented reality rehabilitation system,” in Proceedings of the IEEE International Workshop on Medical Measurements and Applications (MeMeA '09), pp. 89–94, May 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. H. M. Hondori, M. Khademi, L. Dodakian, S. C. Cramer, and C. V. Lopes, “A spatial augmented reality rehab system for post-stroke hand rehabilitation,” Studies in Health Technology and Informatics, vol. 184, pp. 279–285, 2013. View at Google Scholar
  16. M. Khademi, H. Mousavi Hondori, C. V. Lopes, L. Dodakian, and S. C. Cramer, “Haptic augmented reality to monitor human arm's stiffness in rehabilitation,” in Proceedings of the IEEE Conference on Biomedical Engineering and Sciences (IECBES '12), pp. 892–895, 2012.
  17. S. V. Adamovich, A. S. Merians, R. Boian et al., “A virtual reality based exercise system for hand rehabilitation post-stroke: transfer to function,” in Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '04), pp. 4936–4939, September 2004. View at Scopus
  18. X. Luo, T. Kline, H. C. Fischer, K. A. Stubblefield, R. V. Kenyon, and D. G. Kamper, “Integration of augmented reality and assistive devices for post-stroke hand opening rehabilitation,” in Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE-EMBS '05), vol. 7, pp. 6855–6858, September 2005. View at Scopus
  19. S. H. You, S. H. Jang, Y.-H. Kim et al., “Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study,” Stroke, vol. 36, no. 6, pp. 1166–1171, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. J. Rosen, “Telerehabilitation,” NeuroRehabilitation, vol. 12, no. 1, pp. 11–26, 1999. View at Google Scholar · View at Scopus
  21. G. Kurillo, R. Bajcsy, K. Nahrsted, and O. Kreylos, “Immersive 3D environment for remote collaboration and training of physical activities,” in Proceedings of the IEEE Virtual Reality (VR '08), pp. 269–270, March 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. U. Yang and G. J. Kim, “Implementation and evaluation of “just follow me”: an immersive, VR-based, motion-training system,” Presence: Teleoperators and Virtual Environments, vol. 11, no. 3, pp. 304–323, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. M. K. Holden, “Neurorehabilitation using “learning by imitation” in virtual environments,” in Usability Evaluation and Interface Design: Cognitive Engineering, Intelligent Agents and Virtual Reality, pp. 624–628, Lawrence Erlbaum, London, UK, 2001. View at Google Scholar
  24. M. P. Bryden, “Measuring handedness with questionnaires,” Neuropsychologia, vol. 15, no. 4-5, pp. 617–624, 1977. View at Google Scholar · View at Scopus
  25. J. B. Shea and R. L. Morgan, “Contextual interference effects on the acquisition, retention, and transfer of a motor skill,” Journal of Experimental Psychology: Human Learning and Memory, vol. 5, no. 2, pp. 179–187, 1979. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Anderson, C. N. Mhurchu, S. Rubenach, M. Clark, C. Spencer, and A. Winsor, “Home or hospital for stroke rehabilitation? Results of a randomized controlled trial. II: cost minimization analysis at 6 months,” Stroke, vol. 31, no. 5, pp. 1032–1037, 2000. View at Google Scholar · View at Scopus
  27. K. E. Laver, D. Schoene, M. Crotty, S. George, N. A. Lannin, and C. Sherrington, Telerehabilitation Services for Stroke, The Cochrane Library, 2012.