Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 648326, 9 pages
http://dx.doi.org/10.1155/2014/648326
Research Article

Phytoliths in Taxonomy of Phylogenetic Domains of Plants

1Scientific Educational Center of Nanotechnology, Far Eastern Federal University, 10 Pushkinskaya Street, Vladivostok 690990, Russia
2Laboratory of Ecology and Protection Animals, Pacific Institute of Geography FEB RAS, 7 Radio Street, Vladivostok 690041, Russia
3Laboratory of Enzyme Chemistry, Pacific Institute of Bioorganic Chemistry FEB RAS, 159 Prospect 100 Let Vladivostoku, Vladivostok 690022, Russia
4Laboratory of Molecular Biology, Blagoveshchensk State Pedagogical University, 104 Lenina Street, Blagoveshchensk 675000, Russia

Received 17 April 2014; Accepted 3 July 2014; Published 27 August 2014

Academic Editor: Vassily Lyubetsky

Copyright © 2014 Kirill S. Golokhvast et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Raven, “Cycling silicon—the role of accumulation in plants,” New Phytologist, vol. 158, no. 3, pp. 419–430, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Li, P. Lin, J. He, Z. Yang, and Y. Lin, “Silicon's organic pool and biological cycle in moso bamboo community of Wuyishan Biosphere Reserve,” Journal of Zhejiang University: Science B, vol. 7, no. 11, pp. 849–857, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Liang, W. Sun, Y. Zhu, and P. Christie, “Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review,” Environmental Pollution, vol. 147, no. 2, pp. 422–428, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Mizuta and H. Yasui, “Protective function of silicon deposition in Saccharina japonica sporophytes (Phaeophyceae),” Journal of Applied Phycology, vol. 24, no. 5, pp. 1177–1182, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Sivanesan and B. R. Jeong, “Silicon promotes adventitious shoot regeneration and enhances salinity tolerance of Ajuga multiflora bunge by altering activity of antioxidant enzyme,” The Scientific World Journal, vol. 2014, Article ID 521703, 10 pages, 2014. View at Publisher · View at Google Scholar
  6. D. R. Piperno, Phytolith Analysis, An Archaeological and Geological Perspective, Academic Press, San Diego, Calif, USA, 1988.
  7. D. R. Piperno, Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists, AltaMira Press, Lanham, Md, USA, 2006.
  8. M. Madella, A. Alexandre, and T. Ball, “International code for phytolith nomenclature 1.0,” Annals of Botany, vol. 96, no. 2, pp. 253–260, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Agarie, W. Agata, H. Uchida, F. Kubota, and P. B. Kaufman, “Function of silica bodies in the epidermal system of rice (Oryza sativa L.): testing the window hypothesis,” Journal of Experimental Botany, vol. 47, no. 298, pp. 655–660, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Bauer, R. Elbaum, and I. M. Weiss, “Calcium and silicon mineralization in land plants: transport, structure and function,” Plant Science, vol. 180, no. 6, pp. 746–756, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. C. A. E. Strömberg, “Evolution of grasses and grassland ecosystems,” Annual Review of Earth and Planetary Sciences, vol. 39, pp. 517–544, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. C. A.E. Strömberg, R. E. Dunn, R. H. Madden, M. J. Kohn, and A. A. Carlini, “Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America,” Nature Communications, vol. 4, article 1478, 2013. View at Publisher · View at Google Scholar
  13. K. Klančnik, K. Vogel-Mikuš, and A. Gaberščik, “Silicified structures affect leaf optical properties in grasses and sedge,” Journal of Photochemistry and Photobiology B, vol. 130, pp. 1–10, 2014. View at Google Scholar
  14. D. Moreira, H. Le Guyader, and H. Philippe, “The origin of red algae and the evolution of chloroplasts,” Nature, vol. 405, no. 6782, pp. 69–72, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. G. I. McFadden and G. G. van Dooren, “Evolution: red algal genome affirms a common origin of all plastids,” Current Biology, vol. 14, no. 13, pp. R514–R516, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. L. A. Lewis and R. M. McCourt, “Green algae and the origin of land plants,” American Journal of Botany, vol. 91, no. 10, pp. 1535–1556, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. H. S. Yoon, K. M. Müller, R. G. Sheath, F. D. Ott, and D. Bhattacharya, “Defining the major lineages of red algae (Rhodophyta),” Journal of Phycology, vol. 42, no. 2, pp. 482–492, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. T. Clarke, R. C. M. Warnock, and P. C. J. Donoghue, “Establishing a time-scale for plant evolution,” New Phytologist, vol. 192, no. 1, pp. 266–301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. D. Guiry and G. M. Guiry, AlgaeBase, World-wide electronic publication, National University of Ireland, Galway, Ireland, 2013, http://www.algaebase.org.
  20. N. J. Butterfield, “Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes,” Paleobiology, vol. 26, no. 3, pp. 386–404, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Nozaki, M. Matsuzaki, M. Takahara et al., “The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids,” Journal of Molecular Evolution, vol. 56, no. 4, pp. 485–497, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. H. S. Yoon, J. D. Hackett, C. Ciniglia, G. Pinto, and D. Bhattacharya, “A molecular timeline for the origin of photosynthetic eukaryotes,” Molecular Biology and Evolution, vol. 21, no. 5, pp. 809–818, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. T. N. Taylor, H. Hass, W. Remy, and H. Kerp, “The oldest fossil lichen,” Nature, vol. 378, no. 6554, p. 244, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. G. J. Retallack, “Were the Ediacaran fossils lichens?” Paleobiology, vol. 20, no. 4, pp. 523–544, 1994. View at Google Scholar · View at Scopus
  25. A. H. Jahren, S. Porter, and J. J. Kuglitsch, “Lichen metabolism identified in Early Devonian terrestrial organisms,” Geology, vol. 31, no. 2, pp. 99–102, 2003. View at Google Scholar
  26. B. J. Fletcher, D. J. Beerling, and W. G. Chaloner, “Stable carbon isotopes and the metabolism of the terrestrial Devonian organism Spongiophyton,” Geobiology, vol. 2, no. 2, pp. 107–119, 2004. View at Google Scholar
  27. G. J. Retallack, “Growth, decay and burial compaction of Dickinsonia, an iconic Ediacaran fossil,” Alcheringa, vol. 31, no. 3, pp. 215–240, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Yuan, S. Xiao, and T. N. Taylor, “Lichen-like symbiosis 600 million years ago,” Science, vol. 308, no. 5724, pp. 1017–1020, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. W. N. Stewart and G. W. Rothwell, Paleobotany and the Evolution of Plants, Cambridge University Press, Cambridge, UK, 2nd edition, 1993.
  30. A. Bennici, “Origin and early evolution of land plants. Problems and considerations,” Communicative & Integrative Biology, vol. 1, no. 2, pp. 212–218, 2008. View at Google Scholar
  31. L. Medlin, W. H. C. F. Kooistra, D. Potter, G. Saanders, and R. A. Wandersen, “Phylogenetic relationships of the 'golden algae' (haptophytes, heterokont chromophytes) and their plastids,” in The Origin of the Algae and their Plastids, D. Bhattacharya, Ed., vol. 11 of Plants Systematics and Evolution, pp. 187–219, 1997. View at Publisher · View at Google Scholar
  32. B.-L. Lim, “Molecular evolution of 5S ribosomal RNA from red and brown algae,” Japanese Journal of Genetics, vol. 61, no. 2, pp. 169–176, 1986. View at Google Scholar
  33. I. E. Pamirsky and K. S. Golokhvast, “Origin and status of homologous proteins of biomineralization (Biosilicification) in the taxonomy of phylogenetic domains,” BioMed Research International, vol. 2013, Article ID 397278, 7 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Richthammer, M. Börmel, E. Brunner, and K. Van Pée, “Biomineralization in diatoms: the role of silacidins,” ChemBioChem, vol. 12, no. 9, pp. 1362–1366, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. H. C. Schröder, A. Krasko, D. Brandt et al., “Silicateins, silicase and spicule-associated proteins: synthesis of demosponge silica skeleton and nanobiotechnological applications,” in Porifera Research: Biodiversity, Innovation and Sustainability, pp. 581–592, Museu Nacional, Rio de Janeiro, Brazil, 2007. View at Google Scholar
  36. N. Kröger, R. Deutzmann, and M. Sumper, “Silica-precipitating peptides from diatoms: the chemical structure of silaffin-1A from Cylindrotheca fusiformis,” The Journal of Biological Chemistry, vol. 276, no. 28, pp. 26066–26070, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. S. V. Patwardhan, K. Shiba, H. C. Schröder, W. E. G. Müller, S. J. Clarson, and C. C. Perry, “The interaction of silicon with proteins. Part 2. The rold of bioinspired peptide and recombinant proteins in silica polymerization,” ACS Symposium Series, vol. 964, pp. 328–347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Bonomo, A. F. Zucol, B. Gutiérrez Téllez, A. Coradeghini, and M. S. Vigna, “Late holocene palaeoenvironments of the Nutria Mansa 1 archaeological site, Argentina,” Journal of Paleolimnology, vol. 41, no. 2, pp. 273–296, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Goffinet and A. J. Shaw, Eds., Bryophyte Biology, Cambridge University Press, Cambridge, UK, 2nd edition, 2008.
  40. I. E. Pamirsky, K. S. Golokhvast, A. M. Panichev et al., “Influence of nano- and microparticles of natural minerals on human thrombocytes aggregation,” Reports of the Samara Scientific Center RAS, vol. 4, no. 3, pp. 723–728, 2010 (Russian). View at Google Scholar