Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 671087, 11 pages
http://dx.doi.org/10.1155/2014/671087
Review Article

Role of Circulating Lymphocytes in Patients with Sepsis

1Intensive Care Unit, University Hospital “Príncipe de Asturias”, University of Alcala, Alcala de Henares, 28805 Madrid, Spain
2Laboratory of Immune System Diseases and Oncology, National Biotechnology Center (CNB-CSIC) Associated Unit, Department of Medicine and Medical Specialties, University of Alcala, 28871 Madrid, Spain
3Immune System Diseases and Oncology Service, University Hospital “Príncipe de Asturias”, University of Alcala, Alcala de Henares, 28805 Madrid, Spain

Received 23 February 2014; Revised 15 July 2014; Accepted 29 July 2014; Published 28 August 2014

Academic Editor: Baoli Cheng

Copyright © 2014 Raul de Pablo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. C. Bone, R. A. Balk, F. B. Cerra et al., “Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicin,” Chest, vol. 101, pp. 1644–1655, 1992. View at Google Scholar
  2. D. C. Angus, W. T. Linde-Zwirble, J. Lidicker, G. Clermont, J. Carcillo, and M. R. Pinsky, “Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care,” Critical Care Medicine, vol. 29, no. 7, pp. 1303–1310, 2001. View at Google Scholar · View at Scopus
  3. V. Y. Dombrovskiy, A. A. Martin, J. Sunderram, and H. L. Paz, “Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003,” Critical Care Medicine, vol. 35, no. 5, pp. 1244–1250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. G. S. Martin, D. M. Mannino, S. Eaton, and M. Moss, “The epidemiology of sepsis in the United States from 1979 through 2000,” The New England Journal of Medicine, vol. 348, no. 16, pp. 1546–1554, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. R. S. Hotchkiss and I. E. Karl, “The pathophysiology and treatment of sepsis,” The New England Journal of Medicine, vol. 348, no. 2, pp. 138–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. M. M. Levy, W. L. Macias, J. Vincent et al., “Early changes in organ function predict eventual survival in severe sepsis,” Critical Care Medicine, vol. 33, no. 10, pp. 2194–2201, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Cohen, “The immunopathogenesis of sepsis,” Nature, vol. 420, no. 6917, pp. 885–891, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. R. de Pablo, J. Monserrat, A. Prieto, and M. Álvarez-Mon, “Role of circulating soluble chemokines in septic shock,” Medicina Intensiva, vol. 37, no. 8, pp. 510–518, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. R. De Pablo Sánchez, J. Monserrat Sanz, A. Prieto Martín, E. Reyes Martín, M. Alvarez De Mon Soto, and M. Sanchez Garcia, “The balance between pro-inflammatory and anti-inflammatory citokines in septic states,” Medicina Intensiva, vol. 29, no. 3, pp. 151–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. L. M. Hoesel, T. A. Neff, S. B. Neff et al., “Harmful and protective roles of neutrophils in sepsis,” Shock, vol. 24, no. 1, pp. 40–47, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Adib-Conquy and J. M. Cavaillon, “Compensatory anti-inflammatory response syndrome,” Thrombosis and Haemostasis, vol. 101, no. 1, pp. 36–47, 2009. View at Google Scholar
  12. R. De Pablo, J. Monserrat, E. Reyes et al., “Mortality in patients with septic shock correlates with anti-inflammatory but not proinflammatory immunomodulatory molecules,” Journal of Intensive Care Medicine, vol. 26, no. 2, pp. 125–132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J.-M. Cavaillon, M. Adib-Conquy, I. Cloëz-Tayarani, and C. Fitting, “Immunodepression in sepsis and SIRS assessed by ex vivo cytokine production is not a generalized phenomenon: a review,” Journal of Endotoxin Research, vol. 7, no. 2, pp. 85–93, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Salomao, M. K. C. Brunialti, M. M. Rapozo, G. L. Baggio-Zappia, C. Galanos, and M. Freudenberg, “Bacterial sensing, cell signaling, and modulation of the immune response during sepsis,” Shock, vol. 38, no. 3, pp. 227–242, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. J. J. Douglas, J. L. Tsang, and K. R. Walley, “Sepsis and the innate-like response,” Intensive Care Medicine, vol. 40, no. 2, pp. 249–251, 2014. View at Publisher · View at Google Scholar
  16. A. Bendelac, M. Bonneville, and J. F. Kearney, “Autoreactivity by design: innate B and T lymphocytes,” Nature Reviews Immunology, vol. 1, no. 3, pp. 177–186, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Monserrat, R. de Pablo, D. Díaz et al., “Cellular and molecular markers of outcome in septic shock, severe sepsis and septic shock,” in Understanding a Serious Killer, Intech, 2012. View at Publisher · View at Google Scholar
  18. M. Rodriguez-Zapata, I. Salmeron, L. Manzano, O. J. Salmeron, A. Prieto, and M. Alvarez-Mon, “Defective interferon-gamma production by T-lymphocytes from patients with acute brucellosis,” European Journal of Clinical Investigation, vol. 26, no. 2, pp. 136–140, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. J. H. Anolik, R. J. Looney, F. E. Lund, T. D. Randall, and I. Sanz, “Insights into the heterogeneity of human B cells: diverse functions, roles in autoimmunity, and use as therapeutic targets,” Immunologic Research, vol. 45, no. 2-3, pp. 144–158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Albillos, A. De La Hera, E. Reyes et al., “Tumour necrosis factor-alpha expression by activated monocytes and altered T-cell homeostasis in ascitic alcoholic cirrhosis: amelioration with norfloxacin,” Journal of Hepatology, vol. 40, no. 4, pp. 624–631, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Albillos, A. D. la Hera, M. González et al., “Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement,” Hepatology, vol. 37, no. 1, pp. 208–217, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. J. S. Boomer, K. To, K. C. Chang et al., “Immunosuppression in patients who die of sepsis and multiple organ failure,” Journal of the American Medical Association, vol. 306, no. 23, pp. 2594–2605, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. R. S. Hotchkiss, P. E. Swanson, B. D. Freeman et al., “Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction,” Critical Care Medicine, vol. 27, no. 7, pp. 1230–1251, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. R. S. Hotchkiss, K. W. Tinsley, P. E. Swanson et al., “Prevention of lymphocyte cell death in sepsis improves survival in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 25, pp. 14541–14546, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. C. S. Chung, Y. X. Xu, W. Wang, I. H. Chaudry, and A. Ayala, “Is Fas ligand or endotoxin responsible for mucosal lymphocyte apoptosis in sepsis?” Archives of Surgery, vol. 133, no. 11, pp. 1213–1220, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. R. S. Hotchkiss, K. C. Chang, P. E. Swanson et al., “Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte,” Nature Immunology, vol. 1, no. 6, pp. 496–501, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Oberholzer, A. Oberholzer, F. R. Bahjat et al., “Targeted adenovirus-induced expression of IL-10 decreases thymic apoptosis and improves survival in murine sepsis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 20, pp. 11503–11508, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Venet, A. Lepape, and G. Monneret, “Clinical review: flow cytometry perspectives in the ICU-from diagnosis of infection to monitoring of injury-induced immune dysfunctions,” Critical Care, vol. 15, no. 5, article 231, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Monneret, F. Venet, A. Pachot, and A. Lepape, “Monitoring immune dysfunctions in the septic patient: a new skin for the old ceremony,” Molecular Medicine, vol. 14, no. 1-2, pp. 64–78, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. L. Meakins, J. B. Pietsch, O. Bubenick et al., “Delayed hypersensitivity: indicator of acquired failure of host defenses in sepsis and trauma,” Annals of Surgery, vol. 186, no. 3, pp. 241–250, 1977. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Heidecke, T. Hensler, H. Weighardt et al., “Selective defects of T lymphocyte function in patients with lethal intraabdominal infection,” The American Journal of Surgery, vol. 178, no. 4, pp. 288–292, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. J. B. Ochoa and V. Makarenkova, “T lymphocytes,” Critical Care Medicine, vol. 33, no. 12 supplement, pp. S510–S513, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. T. R. Mosmann and R. L. Coffman, “TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties,” Annual Review of Immunology, vol. 7, pp. 145–173, 1989. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Adrie, M. Adib-Conquy, I. Laurent et al., “Successful cardiopulmonary resuscitation after cardiac arrest as a sepsis-like syndrome,” Circulation, vol. 106, pp. 562–568, 2002. View at Google Scholar
  35. H. P. Wu, K. Chung, C. Y. Lin, B. Y. Jiang, D. Y. Chuang, and Y. C. Liu, “Associations of T helper 1, 2, 17 and regulatory T lymphocytes with mortality in severe sepsis,” Inflammation Research, vol. 62, no. 8, pp. 751–763, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. N. R. Ferguson, H. F. Galley, and N. R. Webster, “T helper cell subset ratios in patients with severe sepsis,” Intensive Care Medicine, vol. 25, no. 1, pp. 106–109, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. W. G. Cheadle, R. M. Pemberton, D. Robinson, D. H. Livingston, J. L. Rodriguez, and H. C. Polk Jr., “Lymphocyte subset responses to trauma and sepsis,” Journal of Trauma, vol. 35, no. 6, pp. 844–849, 1993. View at Publisher · View at Google Scholar · View at Scopus
  38. C. H. Wakefield, P. D. Carey, S. Foulds, J. R. T. Monson, and P. J. Guillou, “Changes in major histocompatibility complex class II expression in monocytes and T cells of patients developing infection after surgery,” British Journal of Surgery, vol. 80, no. 2, pp. 205–209, 1993. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Monserrat, R. de Pablo, E. Reyes et al., “Clinical relevance of the severe abnormalities of the T cell compartment in septic shock patients,” Critical Care, vol. 13, no. 1, article R26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. R. S. Hotchkiss, K. W. Tinsley, P. E. Swanson et al., “Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans,” Journal of Immunology, vol. 166, no. 11, pp. 6952–6963, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Venet, F. Davin, C. Guignant et al., “Early assessment of leukocyte alterations at diagnosis of septic shock,” Shock, vol. 34, no. 4, pp. 358–363, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Hirahara, A. Poholek, G. Vahedi et al., “Mechanisms underlying helper T-cell plasticity: implications for immune-mediated disease,” Journal of Allergy and Clinical Immunology, vol. 131, no. 5, pp. 1276–1287, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Bettelli, Y. Carrier, W. Gao et al., “Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells,” Nature, vol. 441, no. 7090, pp. 235–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. P. R. Mangan, L. E. Harrington, D. B. O'Quinn et al., “Transforming growth factor-β induces development of the TH17 lineage,” Nature, vol. 441, no. 7090, pp. 231–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Veldhoen, R. J. Hocking, C. J. Atkins, R. M. Locksley, and B. Stockinger, “TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells,” Immunity, vol. 24, no. 2, pp. 179–189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. C. L. Roark, P. L. Simonian, A. P. Fontenot, W. K. Born, and R. L. O'Brien, “γδ T cells: an important source of IL-17,” Current Opinion in Immunology, vol. 20, no. 3, pp. 353–357, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. M. H. Lexberg, A. Taubner, A. Förster et al., “Th memory for interleukin-17 expression is stable in vivo,” European Journal of Immunology, vol. 38, no. 10, pp. 2654–2664, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. K. Lee, H. Turner, C. L. Maynard et al., “Late developmental plasticity in the T helper 17 lineage,” Immunity, vol. 30, no. 1, pp. 92–107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Bettelli, T. Korn, M. Oukka, and V. K. Kuchroo, “Induction and effector functions of TH17 cells,” Nature, vol. 453, no. 7198, pp. 1051–1057, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. C. S. Ma, G. Y. J. Chew, N. Simpson et al., “Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3,” Journal of Experimental Medicine, vol. 205, no. 7, pp. 1551–1557, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Ye, F. H. Rodriguez, S. Kanaly et al., “Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense,” Journal of Experimental Medicine, vol. 194, no. 4, pp. 519–527, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Nishijima, “Somatomedin-C as a fetal growth promoting factor and amino acid composition of cord blood in Japanese neonates,” Journal of Perinatal Medicine, vol. 14, no. 3, pp. 163–169, 1986. View at Publisher · View at Google Scholar · View at Scopus
  53. D. B. Hoyt, A. N. Ozkan, J. L. Ninnemann, J. F. Hansbrough, E. Pinney, and S. Wormsley, “Trauma peptide induction of lymphocyte changes predictive of sepsis,” Journal of Surgical Research, vol. 45, no. 4, pp. 342–348, 1988. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Y. Lin, M. E. Astiz, J. C. Saxon, and E. C. Rackow, “Altered leukocyte immunophenotypes in septic shock: Studies of HLA-DR, CD11b, CD14, and IL-2R expression,” Chest, vol. 104, no. 3, pp. 847–853, 1993. View at Publisher · View at Google Scholar · View at Scopus
  55. R. S. Hotchkiss, K. W. Tinsley, P. E. Swanson et al., “Depletion of dendritic cells, but not macrophages, in patients with sepsis,” Journal of Immunology, vol. 168, no. 5, pp. 2493–2500, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Jonuleit, E. Schmitt, K. Steinbrink, and A. H. Enk, “Dendritic cells as a tool to induce anergic and regulatory T cells,” Trends in Immunology, vol. 22, no. 7, pp. 394–400, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. L. N. Jiang, Y. M. Yao, and Z. Y. Sheng, “The role of regulatory T cells in the pathogenesis of sepsis and its clinical implication,” Journal of Interferon and Cytokine Research, vol. 32, no. 8, pp. 341–349, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. F. Hein, F. Massin, A. Cravoisy-Popovic et al., “The relationship between CD4+CD25+CD127- regulatory T cells and inflammatory response and outcome during shock states,” Critical Care, vol. 14, no. 1, article R19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. G. Monneret, A. L. Debard, F. Venet et al., “Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis,” Critical Care Medicine, vol. 31, no. 7, pp. 2068–2071, 2003. View at Google Scholar
  60. F. Venet, C. Chung, H. Kherouf et al., “Increased circulating regulatory T cells (CD4+CD25+CD127) contribute to lymphocyte anergy in septic shock patients,” Intensive Care Medicine, vol. 35, no. 4, pp. 678–686, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Holub, Z. Klucková, B. Beneda et al., “Changes in lymphocyte subpopulations and CD3+/DR+ expression in sepsis,” Clinical Microbiology and Infection, vol. 6, no. 12, pp. 657–660, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Holub, Z. Klučková, M. Helcl, J. Přihodov, R. Rokyta, and O. Beran, “Lymphocyte subset numbers depend on the bacterial origin of sepsis,” Clinical Microbiology and Infection, vol. 9, no. 3, pp. 202–211, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Kabisch, K. Gemar, W. Krumholz, F. Salomon, and H. Pralle, “Lymphocyte subpopulations in sepsis-prone patients in a surgical intensive care unit,” Anaesthesist, vol. 39, no. 9, pp. 439–444, 1990. View at Google Scholar · View at Scopus
  64. T. Mustelin, K. M. Coggeshall, and A. Altman, “Rapid activation of the T-cell tyrosine protein kinase pp56(lck) by the CD45 phosphotyrosine phosphatase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 16, pp. 6302–6306, 1989. View at Google Scholar · View at Scopus
  65. M. L. Hermiston, Z. Xu, and A. Weiss, “CD45: a critical regulator of signaling thresholds in immune cells,” Annual Review of Immunology, vol. 21, pp. 107–137, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. D. M. Sansom and L. S. K. Walker, “The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology,” Immunological Reviews, vol. 212, pp. 131–148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Fiorentini, S. Licenziati, G. Alessandri et al., “Cd11b expression identifies cd8+cd28+ T lymphocytes with phenotype and function of both naive/memory and effector cells,” The Journal of Immunology, vol. 166, no. 2, pp. 900–907, 2001. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Labalette, E. Leteurtre, C. Thumerelle, C. Grutzmacher, B. Tourvieille, and J. Dessalnt, “Peripheral human CD8+CD28+ T lymphocytes give rise to CD28- progeny, but IL-4 prevents loss of CD28 expression,” International Immunology, vol. 11, no. 8, pp. 1327–1336, 1999. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Manjuck, D. C. Saha, M. Astiz, L. Eales, and E. C. Rackow, “Decreased response to recall antigens is associated with depressed costimulatory receptor expression in septic critically ill patients,” Journal of Laboratory and Clinical Medicine, vol. 135, no. 2, pp. 153–160, 2000. View at Publisher · View at Google Scholar · View at Scopus
  70. M. L. K. Tang, D. A. Steeber, X. Q. Zhang, and T. F. Tedder, “Intrinsic differences in L-selectin expression levels affect T and B lymphocyte subset-specific recirculation pathways,” Journal of Immunology, vol. 160, no. 10, pp. 5113–5121, 1998. View at Google Scholar · View at Scopus
  71. P. Sarobe, J.-J. Lasarte, N. García, M. P. Civeira, F. Borrás-Cuesta, and J. Prieto, “Characterization of T-cell responses against immunodominant epitopes from hepatitis C virus E2 and NS4a proteins,” Journal of Viral Hepatitis, vol. 13, no. 1, pp. 47–55, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. D. I. Godfrey, H. R. MacDonald, M. Kronenberg, M. J. Smyth, and L. Van Kaer, “NKT cells: what's in a name?” Nature Reviews Immunology, vol. 4, no. 3, pp. 231–237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. M. J. Smyth, K. Y. T. Thia, S. E. A. Street et al., “Differential tumor surveillance by natural killer (NK) and NKT cells,” Journal of Experimental Medicine, vol. 191, no. 4, pp. 661–668, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. B. Leung and H. W. Harris, “NKT cells: the culprits of sepsis?” Journal of Surgical Research, vol. 167, no. 1, pp. 87–95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. D. S. Heffernan, S. F. Monaghan, C. S. Chung, W. G. Cioffi, S. Gravenstein, and A. Ayala, “A divergent response of innate regulatory T-cells to sepsis in humans: circulating invariant natural killer T-cells are preserved,” Human Immunology, vol. 75, no. 3, pp. 277–282, 2014. View at Google Scholar
  76. D. Grimaldi, L. Le Bourhis, B. Sauneuf et al., “Specific MAIT cell behaviour among innate-like T lymphocytes in critically ill patients with severe infections,” Intensive Care Medicine, vol. 40, no. 2, pp. 192–201, 2014. View at Publisher · View at Google Scholar
  77. E. M. Andrew and S. R. Carding, “Murine γδ T cells in infections: beneficial or deleterious?” Microbes and Infection, vol. 7, no. 3, pp. 529–536, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. F. Venet, J. Bohé, A. Debard, J. Bienvenu, A. Lepape, and G. Monneret, “Both percentage of γδ T lymphocytes and CD3 expression are reduced during septic shock,” Critical Care Medicine, vol. 33, no. 12, pp. 2836–2840, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Matsushima, H. Ogura, K. Fujita et al., “Early activation of γδ T lymphocytes in patients with severe systemic inflammatory response syndrome,” Shock, vol. 22, no. 1, pp. 11–15, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. J. C. Andreu-Ballester, C. Tormo-Calandín, C. Garcia-Ballesteros et al., “Association of γδ T cells with disease severity and mortality in septic patients,” Clinical and Vaccine Immunology, vol. 20, no. 5, pp. 738–746, 2013. View at Publisher · View at Google Scholar · View at Scopus
  81. . Le Bourhis L, E. Martin, I. Peguillet et al., “Antimicrobial activity of mucosal-associated invariant T cells,” Nature Immunology, vol. 11, no. 8, pp. 701–708, 2010. View at Google Scholar
  82. R. de Pablo, J. Monserrat, C. Torrijos, M. Martín, A. Prieto, and M. Alvarez-Mon, “The predictive role of early activation of natural killer cells in septic shock,” Critical Care, vol. 16, no. 2, article 413, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Andaluz-Ojeda, V. Iglesias, F. Bobillo et al., “Early natural killer cell counts in blood predict mortality in severe sepsis,” Critical Care, vol. 15, no. 5, Article ID R243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. C. Romagnani, K. Juelke, M. Falco et al., “CD56brightCD16- killer Ig-like receptor- NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation,” Journal of Immunology, vol. 178, no. 8, pp. 4947–4955, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Lunemann, J. D. Lunemann, and C. Munz, “Regulatory NK-cell functions in inflammation and autoimmunity,” Molecular Medicine, vol. 15, no. 9-10, pp. 352–358, 2009. View at Google Scholar
  86. T. Walzer, M. Dalod, S. H. Robbins, L. Zitvogel, and E. Vivier, “Natural-killer cells and dendritic cells: ‘l'union fait la force’,” Blood, vol. 106, no. 7, pp. 2252–2258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. F. Bellora, R. Castriconi, A. Dondero et al., “The interaction of human natural killer cells with either unpolarized or polarized macrophages results in different functional outcomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 50, pp. 21659–21664, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Costantini and M. A. Cassatella, “The defensive alliance between neutrophils and NK cells as a novel arm of innate immunity,” Journal of Leukocyte Biology, vol. 89, no. 2, pp. 221–233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Chalifour, P. Jeannin, J. Gauchat et al., “Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers α-defensin production,” Blood, vol. 104, no. 6, pp. 1778–1783, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. F. Souza-Fonseca-Guimaraes, M. Adib-Conquy, and J. Cavaillon, “Natural killer (NK) cells in antibacterial innate immunity: angels or devils?” Molecular Medicine, vol. 18, no. 1, pp. 270–285, 2012. View at Google Scholar · View at Scopus
  91. E. J. Giamarellos-Bourboulis, T. Tsaganos, E. Spyridaki et al., “Early changes of CD4-positive lymphocytes and NK cells in patients with severe Gram-negative sepsis,” Critical Care, vol. 10, no. 6, article R166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Forel, L. Chiche, G. Thomas et al., “Phenotype and functions of natural killer cells in critically-ill septic patients,” PLoS ONE, vol. 7, no. 12, Article ID e50446, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. F. Borrego, M. J. Robertson, J. Ritz, J. Peña, and R. Solana, “CD69 is a stimulatory receptor for natural killer cell and its cytotoxic effect is blocked by CD94 inhibitory receptor,” Immunology, vol. 97, no. 1, pp. 159–165, 1999. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Emoto, M. Miyamoto, I. Yoshizawa et al., “Critical role of NK cells rather than Vα14+NKT cells in lipopolysaccharide-induced lethal shock in mice,” Journal of Immunology, vol. 169, no. 3, pp. 1426–1432, 2002. View at Publisher · View at Google Scholar · View at Scopus
  95. W. E. Carson, H. Yu, J. Dierksheide et al., “A fatal cytokine-induced systemic inflammatory response reveals a critical role for NK cells,” Journal of Immunology, vol. 162, no. 8, pp. 4943–4951, 1999. View at Google Scholar · View at Scopus
  96. A. R. Kerr, L. A. S. Kirkham, A. Kadioglu et al., “Identification of a detrimental role for NK cells in pneumococcal pneumonia and sepsis in immunocompromised hosts,” Microbes and Infection, vol. 7, no. 5-6, pp. 845–852, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. B. Badgwell, R. Parihar, C. Magro, J. Dierksheide, T. Russo, and W. E. Carson III, “Natural killer cells contribute to the lethality of a murine model of Escherichi coli infection,” Surgery, vol. 132, no. 2, pp. 205–212, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. A. O. Etogo, J. Nunez, C. Y. Lin, T. E. Toliver-Kinsky, and E. R. Sherwood, “NK but not CD1-restricted NKT cells facilitate systemic inflammation during polymicrobial intra-abdominal sepsis,” Journal of Immunology, vol. 180, no. 9, pp. 6334–6345, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. L. Chiche, J. Forel, G. Thomas et al., “The role of natural killer cells in sepsis,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 986491, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. H. Heremans, C. Dillen, J. van Damme, and A. Billiau, “Essential role for natural killer cells in the lethal lipopolysaccharide-induced Shwartzman-like reaction in mice,” European Journal of Immunology, vol. 24, no. 5, pp. 1155–1160, 1994. View at Publisher · View at Google Scholar · View at Scopus
  101. K. M. Kelly-Scumpia, P. O. Scumpia, J. S. Weinstein et al., “B cells enhance early innate immune responses during bacterial sepsis,” Journal of Experimental Medicine, vol. 208, no. 8, pp. 1673–1682, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. A. T. Vaughan, A. Roghanian, and M. S. Cragg, “B cells—Masters of the immunoverse,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 3, pp. 280–285, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. D. J. Rawlings, M. A. Schwartz, S. W. Jackson, and A. Meyer-Bahlburg, “Integration of B cell responses through Toll-like receptors and antigen receptors,” Nature Reviews Immunology, vol. 12, no. 4, pp. 282–294, 2012. View at Publisher · View at Google Scholar · View at Scopus
  104. C. Mauri and A. Bosma, “Immune regulatory function of B cells,” Annual Review of Immunology, vol. 30, pp. 221–241, 2012. View at Publisher · View at Google Scholar · View at Scopus
  105. J. Booth, H. Wilson, S. Jimbo, and G. Mutwiri, “Modulation of B cell responses by Toll-like receptors,” Cell and Tissue Research, vol. 343, no. 1, pp. 131–140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. T. C. Darton, J. B. Wing, A. Lees, A. W. Heath, and R. C. Read, “Adult survivors of invasive pneumococcal disease exhibit defective B cell function,” Clinical Infectious Diseases, vol. 52, no. 9, pp. 1133–1136, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. P. J. Rauch, A. Chudnovskiy, C. S. Robbins et al., “Innate response activator B cells protect against microbial sepsis,” Science, vol. 335, no. 6068, pp. 597–601, 2012. View at Publisher · View at Google Scholar · View at Scopus
  108. C. S. Robbins and F. K. Swirski, “Newly discovered innate response activator B cells: crucial responders against microbial sepsis,” Expert Review of Clinical Immunology, vol. 8, no. 5, pp. 405–407, 2012. View at Publisher · View at Google Scholar · View at Scopus
  109. N. J. Shubin, S. F. Monaghan, and A. Ayala, “Anti-inflammatory mechanisms of sepsis,” Contributions to Microbiology, vol. 17, pp. 108–124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Monserrat, R. de Pablo, D. Diaz-Martín et al., “Early alterations of B cells in patients with septic shock,” Critical Care, vol. 17, no. 3, article R105, 2013. View at Publisher · View at Google Scholar · View at Scopus
  111. G. Roth, B. Moser, C. Krenn et al., “Susceptibility to programmed cell death in T-lymphocytes from septic patients: a mechanism for lymphopenia and Th2 predominance,” Biochemical and Biophysical Research Communications, vol. 308, no. 4, pp. 840–846, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. L. J. Rosenwasser and J. Meng, “Anti-CD23,” Clinical Reviews in Allergy and Immunology, vol. 29, no. 1, pp. 61–72, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. A. Nolan, H. Kobayashi, B. Naveed et al., “Differential role for CD80 and CD86 in the regulation of the innate immune response in murine polymicrobial sepsis,” PLoS ONE, vol. 4, no. 8, Article ID e6600, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. A. Nolan, M. Weiden, A. Kelly et al., “CD40 and CD80/86 act synergistically to regulate inflammation and mortality in polymicrobial sepsis,” The American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 3, pp. 301–308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. J. E. McDunn and R. S. Hotchkiss, “Leukocyte phenotyping to stratify septic shock patients,” Critical Care, vol. 13, no. 2, p. 127, 2009. View at Google Scholar · View at Scopus
  116. F. Venet, A. C. Lukaszewicz, D. Payen, R. Hotchkiss, and G. Monneret, “Monitoring the immune response in sepsis: a rational approach to administration of immunoadjuvant therapies,” Current Opinion in Immunology, vol. 25, no. 4, pp. 477–483, 2013. View at Publisher · View at Google Scholar · View at Scopus
  117. G. K. Valet and A. Tárnok, “Cytomics in predictive medicine,” Cytometry B: Clinical Cytometry, vol. 53, no. 1, pp. 1–3, 2003. View at Google Scholar · View at Scopus
  118. J. Monserrat, R. de Pablo, A. Prieto, E. Reyes, and M. Álvarez-Mon, “Using surface molecule expression on lymphocytes to classify septic shock patients,” Critical Care, vol. 13, no. 3, article 412, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. F. Turrel, C. Guignant, F. Venet, A. Lepape, and G. Monneret, “Innovative therapeutic strategies for restoring lymphocyte functions in septic patients,” Inflammation and Allergy—Drug Targets, vol. 7, no. 3, pp. 181–186, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. R. S. Hotchkiss, G. Monneret, and D. Payen, “Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach,” The Lancet Infectious Diseases, vol. 13, no. 3, pp. 260–268, 2013. View at Publisher · View at Google Scholar · View at Scopus
  121. K. R. Kasten, P. S. Prakash, J. Unsinger et al., “Interleukin-7 (IL-7) treatment accelerates neutrophil recruitment through γδ T-cell IL-17 production in a murine model of sepsis,” Infection and Immunity, vol. 78, no. 11, pp. 4714–4722, 2010. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Inoue, J. Unsinger, C. G. Davis et al., “IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis,” Journal of Immunology, vol. 184, no. 3, pp. 1401–1409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. B. Pulendran, J. L. Smith, M. Jenkins, M. Schoenborn, E. Maraskovsky, and C. R. Maliszewski, “Prevention of peripheral tolerance by a dendritic cell growth factor: Flt3 ligand as an adjuvant,” Journal of Experimental Medicine, vol. 188, no. 11, pp. 2075–2082, 1998. View at Publisher · View at Google Scholar · View at Scopus
  124. R. S. Hotchkiss, C. M. Coopersmith, and I. E. Karl, “Prevention of lymphocyte apoptosis: a potential treatment of sepsis?” Clinical Infectious Diseases, vol. 41, supplement 7, pp. S465–S469, 2005. View at Publisher · View at Google Scholar · View at Scopus
  125. J. E. McDunn, J. T. Muenzer, B. Dunne et al., “An anti-apoptotic peptide improves survival in lethal total body irradiation,” Biochemical and Biophysical Research Communications, vol. 382, no. 4, pp. 657–662, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. J. G. R. Weaver, M. S. Rouse, J. M. Steckelberg, and A. D. Badley, “Improved survival in experimental sepsis with an orally administered inhibitor of apoptosis,” The FASEB Journal, vol. 18, no. 11, pp. 1185–1191, 2004. View at Publisher · View at Google Scholar · View at Scopus
  127. C. Guignant, A. Lepape, X. Huang et al., “Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients,” Critical Care, vol. 15, no. 2, article R99, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. X. Huang, F. Venet, Y. L. Wang et al., “PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 15, pp. 6303–6308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. P. Brahmamdam, S. Inoue, J. Unsinger, K. C. Chang, J. E. McDunn, and R. S. Hotchkiss, “Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis,” Journal of Leukocyte Biology, vol. 88, no. 2, pp. 233–240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. Y. Zhang, Y. Zhou, J. Lou et al., “PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction,” Critical Care, vol. 14, no. 6, article R220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. J. S. Boomer, J. M. Green, and R. S. Hotchkiss, “The changing immune system in sepsis: is individualized immuno-modulatory therapy the answer?” Virulence, vol. 5, no. 1, pp. 45–56, 2014. View at Google Scholar
  132. W. Döcke, F. Randow, U. Syrbe et al., “Monocyte deactivation in septic patients: restoration by IFN-γ treatment,” Nature Medicine, vol. 3, no. 6, pp. 678–681, 1997. View at Publisher · View at Google Scholar · View at Scopus
  133. D. Payen, G. Monneret, and R. Hotchkiss, “Immunotherapy—a potential new way forward in the treatment of sepsis,” Critical Care, vol. 17, no. 1, article 118, 2013. View at Publisher · View at Google Scholar · View at Scopus
  134. C. O'Suilleabhain, S. T. O'Sullivan, J. L. Kelly, J. Lederer, J. A. Mannick, and M. L. Rodrick, “Interleukin-12 treatment restores normal resistance to bacterial challenge after burn injury,” Surgery, vol. 120, no. 2, pp. 290–296, 1996. View at Publisher · View at Google Scholar · View at Scopus
  135. A. Serafino, P. Pierimarchi, F. Pica et al., “Thymosin α1 as a stimulatory agent of innate cell-mediated immune response,” Annals of the New York Academy of Sciences, vol. 1270, no. 1, pp. 13–20, 2012. View at Publisher · View at Google Scholar · View at Scopus
  136. J. Wu, L. Zhou, J. Liu et al., “The efficacy of thymosin alpha 1 for severe sepsis (ETASS): a multicenter, single-blind, randomized and controlled trial,” Critical Care, vol. 17, no. 1, article R8, 2013. View at Publisher · View at Google Scholar · View at Scopus