Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 679672, 10 pages
http://dx.doi.org/10.1155/2014/679672
Research Article

Planarians Sense Simulated Microgravity and Hypergravity

1Department of Genetics and Institute of Biomedicine, University of Barcelona, Catalonia, 08028 Barcelona, Spain
2Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
3ESA-ESTEC, TEC-MMG, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands
4Pontifical Gregorian University, Piazza della Pilotta 4, 00187 Roma, Italy
5University of Cassino, Via Zamosch 43, 03043 Cassino, Italy

Received 14 May 2014; Revised 12 August 2014; Accepted 12 August 2014; Published 17 September 2014

Academic Editor: Paul J. Higgins

Copyright © 2014 Teresa Adell et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Saló and J. Baguñà, “Regeneration in planarians and other worms: new findings, new tools and new perspectives,” Journal of Experimental Zoology, vol. 292, no. 6, pp. 528–539, 2002. View at Google Scholar
  2. P. W. Reddien and S. Alvarado, “Fundamentals of planarian regeneration,” Annual Review of Cell and Developmental Biology, vol. 20, pp. 725–757, 2004. View at Google Scholar
  3. E. Saló, “The power of regeneration and the stem-cell kingdom: freshwater planarians (Platyhelminthes),” BioEssays, vol. 28, no. 5, pp. 546–559, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. S. Alvarado, “Planarian regeneration: its end is its beginning,” Cell, vol. 124, no. 2, pp. 241–245, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Handberg-Thorsager, E. Fernandez, and E. Saló, “Stem cells and regeneration in planarians,” Frontiers in Bioscience, vol. 13, no. 16, pp. 6374–6394, 2008. View at Google Scholar · View at Scopus
  6. J. Baguñà, “The planarian neoblast: the rambling history of its origin and some current black boxes,” International Journal of Developmental Biology, vol. 56, no. 1–3, pp. 19–37, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Fraguas, S. Barberán, B. Ibarra, L. Stöger, and F. Cebrià, “Regeneration of neuronal cell types in Schmidtea mediterranea : an immunohistochemical and expression study,” The International Journal of Developmental Biology, vol. 56, no. 1–3, pp. 143–153, 2012. View at Publisher · View at Google Scholar
  8. M. Almuedo-Castillo, M. Sureda-Gómez, and T. Adell, “Wnt signaling in planarians: new answers to old questions,” International Journal of Developmental Biology, vol. 56, no. 1–3, pp. 53–65, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. M. D. Molina, E. Saló, and F. Cebrià, “Organizing the DV axis during planarian regeneration,” Communicative & Integrative Biology, vol. 4, pp. 498–500, 2011. View at Publisher · View at Google Scholar
  10. D. Sarkar, T. Nagaya, K. Koga, and H. Seo, “Culture in vector-averaged gravity environment in a clinostat results in detachment of osteoblastic ROS 17/2.8 cells,” Environmental Medicine, vol. 43, no. 1, pp. 22–24, 1999. View at Google Scholar · View at Scopus
  11. B. M. Uva, M. A. Masini, M. Sturla et al., “Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture,” Brain Research, vol. 934, no. 2, pp. 132–139, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Sundaresan, D. Risin, and N. R. Pellis, “Loss of signal transduction and inhibition of lymphocyte locomotion in a ground-based model of microgravity,” In Vitro Cellular & Developmental Biology—Animal, vol. 38, no. 2, pp. 118–122, 2002. View at Google Scholar
  13. G. Auletta, T. Adell, I. Colagè, P. D'Ambrosio, and E. Salò, “Space research program on planarian Schmidtea mediterranea's establishment of the anterior-posterior axis in altered gravity conditions,” Microgravity Science and Technology, vol. 24, no. 6, pp. 419–425, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. J. J. W. A. van Loon, “Some history and use of the random positioning machine, RPM, in gravity related research,” Advances in Space Research, vol. 39, no. 7, pp. 1161–1165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. G. Borst and J. J. W. A. van Loon, “Technology and developments for the random positioning machine, RPM,” Microgravity Science and Technology, vol. 21, no. 4, pp. 287–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Fernandéz-Taboada, S. Moritz, D. Zeuschner et al., “Smed-SmB , a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation,” Development, vol. 137, no. 7, pp. 1055–1065, 2010. View at Publisher · View at Google Scholar
  17. J. M. Martín-Durán, M. Duocastella, P. Serra, and R. Romero, “New method to deliver exogenous material into developing planarian embryos,” Journal of Experimental Zoology B, vol. 310, no. 8, pp. 668–681, 2008. View at Publisher · View at Google Scholar
  18. A. S. Alvarado and P. A. Newmark, “Double-stranded RNA specifically disrupts gene expression during planarian regeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 9, pp. 5049–5054, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. J. J. W. A. van Loon, J. Krause, H. Cunha, J. Goncalves, H. Almeida, and P. Schiller, “The large diameter centrifuge, LDC, for life and physical sciences and technology,” in Proceedings of the Life in Space for Life on Earth Symposium, pp. 22–27, Angers, France, July 2008. View at Scopus
  20. R. J. Skaer, “Some aspects of the cytology of polycelis nigra,” Quarterly Journal of Microscopical Science, vol. 102, pp. 295–317, 1961. View at Google Scholar
  21. C. Papaseit, N. Pochon, and J. Tabony, “Microtubule self-organization is gravity-dependent,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 15, pp. 8364–8368, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. S. J. Crawford-Young, “Effects of microgravity on cell cytoskeleton and embryogenesis,” International Journal of Developmental Biology, vol. 50, no. 2-3, pp. 183–191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Vorselen, W. H. Roos, F. C. MacKintosh, G. J. Wuite, and J. J. van Loon, “The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells,” The FASEB Journal, vol. 28, no. 2, pp. 536–547, 2014. View at Publisher · View at Google Scholar
  24. J. M. Martín-Durán, F. Monjo, and R. Romero, “Planarian embryology in the era of comparative developmental biology,” The International Journal of Developmental Biology, vol. 56, no. 1–3, pp. 39–48, 2012. View at Publisher · View at Google Scholar