Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 691540, 9 pages
http://dx.doi.org/10.1155/2014/691540
Research Article

Serum Fetuin-A Levels in Patients with Cardiovascular Disease: A Meta-Analysis

1Department of Cardiology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha 410008, China
2Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Jilin 132000, China
3Department of Pediatrics, the First Affiliated Hospital of Jilin University, Jilin 132000, China

Received 4 July 2014; Revised 26 July 2014; Accepted 12 August 2014; Published 16 October 2014

Academic Editor: Konstantinos Kantartzis

Copyright © 2014 Ze-Lin Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Aslan and S. Dogan, “Proteomic detection of nitroproteins as potential biomarkers for cardiovascular disease,” Journal of Proteomics, vol. 74, no. 11, pp. 2274–2288, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Yusuf, S. Islam, C. K. Chow et al., “Use of secondary prevention drugs for cardiovascular disease in the community in high-income, middle-income, and low-income countries (the PURE Study): a prospective epidemiological survey,” The Lancet, vol. 378, no. 9798, pp. 1231–1243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. A. S. Go, D. Mozaffarian, V. L. Roger et al., “Heart disease and stroke statistics—2014 update: a report from the American Heart Association,” Circulation, vol. 129, pp. e28–e292, 2014. View at Google Scholar
  4. S. W. Finks, A. Airee, S. L. Chow et al., “Key articles of dietary interventions that influence cardiovascular mortality,” Pharmacotherapy, vol. 32, no. 4, pp. e54–e87, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Finegold, P. Asaria, and D. P. Francis, “Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations,” International Journal of Cardiology, vol. 168, pp. 934–945, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. S. S. Lim, T. Vos, A. D. Flaxman et al., “A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010,” The Lancet, vol. 380, no. 9859, pp. 2224–2260, 2010. View at Publisher · View at Google Scholar
  7. R. von Känel, P. J. Mills, B. T. Mausbach et al., “Effect of Alzheimer caregiving on circulating levels of C-reactive protein and other biomarkers relevant to cardiovascular disease risk: a longitudinal study,” Gerontology, vol. 58, no. 4, pp. 354–365, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. M. K. Jensen, T. M. Bartz, K. J. Mukamal et al., “Fetuin-A, type 2 diabetes, and risk of cardiovascular disease in older adults: the cardiovascular health study,” Diabetes Care, vol. 36, no. 5, pp. 1222–1228, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Maréchal, G. Schlieper, P. Nguyen et al., “Serum fetuin-A levels are associated with vascular calcifications and predict cardiovascular events in renal transplant recipients,” Clinical Journal of the American Society of Nephrology, vol. 6, no. 5, pp. 974–985, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. Z.-W. Zhao, C.-G. Lin, L.-Z. Wu et al., “Serum fetuin-A levels are associated with the presence and severity of coronary artery disease in patients with type 2 diabetes,” Biomarkers, vol. 18, no. 2, pp. 160–164, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. G. N. Nangami, K. Watson, K. Parker-Johnson et al., “Fetuin-A (α2HS-glycoprotein) is a serum chemo-attractant that also promotes invasion of tumor cells through Matrigel,” Biochemical and Biophysical Research Communications, vol. 438, no. 4, pp. 660–665, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Li, S. Zhu, J. Li et al., “A hepatic protein, fetuin-A, occupies a protective role in lethal systemic inflammation,” PLoS ONE, vol. 6, no. 2, Article ID e16945, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Mori, M. Emoto, and M. Inaba, “Fetuin-A and the cardiovascular system,” Advances in Clinical Chemistry, vol. 56, pp. 175–195, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. C.-H. Jung, B.-Y. Kim, C.-H. Kim, S.-K. Kang, S.-H. Jung, and J.-O. Mok, “Associations of serum fetuin-A levels with insulin resistance and vascular complications in patients with type 2 diabetes,” Diabetes and Vascular Disease Research, vol. 10, no. 5, pp. 459–467, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Fisher, N. Stefan, K. Saar et al., “Association of AHSG gene polymorphisms with fetuin-A plasma levels and cardiovascular diseases in the EPIC-potsdam study,” Circulation: Cardiovascular Genetics, vol. 2, no. 6, pp. 607–613, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. D. P. Lorant, M. Grujicic, C. Hoebaus et al., “Fetuin-A levels are increased in patients with type 2 diabetes and peripheral arterial disease,” Diabetes Care, vol. 34, no. 1, pp. 156–161, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Song, M. Xu, Y. Bi et al., “Serum fetuin-A associates with type 2 diabetes and insulin resistance in Chinese adults,” PLoS ONE, vol. 6, no. 4, Article ID e19228, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Lim, S. Moutereau, T. Simon et al., “Usefulness of Fetuin-A and C-reactive protein concentrations for prediction of outcome in acute coronary syndromes (from the French Registry of Acute ST-elevation non-ST-elevation myocardial infarction [FAST-MI]),” The American Journal of Cardiology, vol. 111, no. 1, pp. 31–37, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Basar, N. Sen, S. Kanat et al., “Lower fetuin-A predicts angiographic impaired reperfusion and mortality in ST-elevation myocardial infarction,” Journal of Investigative Medicine, vol. 59, no. 5, pp. 816–822, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. N. P. Kadoglou, G. Kottas, S. Lampropoulos, I. Vitta, and C. D. Liapis, “Serum levels of fetuin-A, osteoprotegerin and osteopontin in patients with coronary artery disease: effects of statin (HMGCoA-reductase inhibitor) therapy,” Clinical Drug Investigation, vol. 34, pp. 165–171, 2014. View at Publisher · View at Google Scholar
  21. S. Ballestri, E. Meschiari, E. Baldelli et al., “Relationship of serum fetuin-A levels with coronary atherosclerotic burden and NAFLD in patients undergoing elective coronary angiography,” Metabolic Syndrome and Related Disorders, vol. 11, no. 4, pp. 289–295, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Lim, J.-P. Collet, S. Moutereau et al., “Fetuin-A is an independent predictor of death after ST-elevation myocardial infarction,” Clinical Chemistry, vol. 53, no. 10, pp. 1835–1840, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Voros, Z. Prohaszka, E. Kaszas et al., “Serum ghrelin level and TNF-alpha/ghrelin ratio in patients with previous myocardial infarction,” Archives of Medical Research, vol. 43, pp. 548–554, 2012. View at Publisher · View at Google Scholar
  24. C. U. Afsar, H. Uzun, S. Yurdakul et al., “Association of serum fetuin-A levels with heart valve calcication and other biomarkers of inflammation among persons with acute coronary syndrome,” Clinical & Investigative Medicine, vol. 35, no. 4, pp. E206–E215, 2012. View at Google Scholar · View at Scopus
  25. O. Bilgir, L. Kebapcilar, F. Bilgir et al., “Decreased serum fetuin-A levels are associated with coronary artery diseases,” Internal Medicine, vol. 49, no. 13, pp. 1281–1285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Weikert, N. Stefan, M. B. Schulze et al., “Plasma fetuin-A levels and the risk of myocardial infarction and ischemic stroke,” Circulation, vol. 118, no. 24, pp. 2555–2562, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. T. Mathews, D. D. Deutsch, G. Iyer et al., “Plasma α2-HS glycoprotein concentrations in patients with acute myocardial infarction quantified by a modified ELISA,” Clinica Chimica Acta, vol. 319, no. 1, pp. 27–34, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Stang, “Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses,” European Journal of Epidemiology, vol. 25, no. 9, pp. 603–605, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Jackson, I. R. White, and R. D. Riley, “Quantifying the impact of between-study heterogeneity in multivariate meta-analyses,” Statistics in Medicine, vol. 31, no. 29, pp. 3805–3820, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  30. J. L. Peters, A. J. Sutton, D. R. Jones, K. R. Abrams, and L. Rushton, “Comparison of two methods to detect publication bias in meta-analysis,” Journal of the American Medical Association, vol. 295, no. 6, pp. 676–680, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Zintzaras and J. P. A. Ioannidis, “HEGESMA: genome search meta-analysis and heterogeneity testing,” Bioinformatics, vol. 21, no. 18, pp. 3672–3673, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. B. G. Nordestgaard and J. Zacho, “Lipids, atherosclerosis and CVD risk: is CRP an innocent bystander?” Nutrition, Metabolism and Cardiovascular Diseases, vol. 19, no. 8, pp. 521–524, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Singh, P. K. Sharma, V. K. Garg, S. C. Mondal, A. K. Singh, and N. Kumar, “Role of fetuin-A in atherosclerosis associated with diabetic patients,” Journal of Pharmacy and Pharmacology, vol. 64, no. 12, pp. 1703–1706, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Mori, Y. Ikari, S. Jono et al., “Fetuin-A is associated with calcified coronary artery disease,” Coronary Artery Disease, vol. 21, no. 5, pp. 281–285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Kanbay, M. Nicoleta, Y. Selcoki et al., “Fibroblast growth factor 23 and fetuin A are independent predictors for the coronary artery disease extent in mild chronic kidney disease,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 10, pp. 1780–1786, 2010. View at Publisher · View at Google Scholar
  36. K. Vörös, Z. Prohászka, E. Kaszás et al., “Serum ghrelin level and TNF-α/ghrelin ratio in patients with previous myocardial infarction,” Archives of Medical Research, vol. 43, pp. 548–554, 2012. View at Google Scholar