Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 713674, 7 pages
http://dx.doi.org/10.1155/2014/713674
Research Article

Radiosensitization Effect of Nedaplatin on Nasopharyngeal Carcinoma Cells in Different Status of Epstein-Barr Virus Infection

1Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing 210009, China
2Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing 210009, China
3Jilin Cancer Hospital, Changchun 130012, China
4Department of Oncology, Xuzhou Medical College, Xuzhou 221004, China

Received 4 February 2014; Accepted 15 April 2014; Published 12 May 2014

Academic Editor: Tsair-Fwu Lee

Copyright © 2014 Li Yin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This study aims to evaluate the radiosensitization effect of nedaplatin on nasopharyngeal carcinoma (NPC) cell lines with different Epstein-Barr virus (EBV) status. Human NPC cell lines CNE-2 (EBV-negative) and C666 (EBV-positive) were treated with 0–100 μg/mL nedaplatin, and inhibitory effects on cell viability and IC50 were calculated by MTS assay. We assessed changes in radiosensitivity of cells by MTS and colony formation assays, and detected the apoptosis index and changes in cell cycle by flow cytometry. MTS assay showed that nedaplatin caused significant cytotoxicity in CNE-2 and C666 cells in a time- and dose-dependent manner. After 24 h, nedaplatin inhibited growth of CNE-2 and C666 cells with IC50 values of 34.32 and 63.69 μg/mL, respectively. Compared with radiation alone, nedaplatin enhanced the radiation effect on both cell lines. Nedaplatin markedly increased apoptosis and cell cycle arrest in G2/M phase. Nedaplatin radiosensitized human NPC cells CNE-2 and C666, with a significantly greater effect on the former. The mechanisms of radiosensitization include induction of apoptosis and enhancement of cell cycle arrest in G2/M phase.