Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 724718, 11 pages
http://dx.doi.org/10.1155/2014/724718
Research Article

Evaluation of the Effect of Andrographolide on Atherosclerotic Rabbits Induced by Porphyromonas gingivalis

1Center of Periodontology Studies, Faculty of Dentistry, Universiti Teknologi Mara (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
2Center of Paediatric Dentistry and Orthodontics Studies, Faculty of Dentistry, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
3Center of Biomolecular Science, Faculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

Received 8 April 2014; Revised 2 July 2014; Accepted 4 July 2014; Published 18 August 2014

Academic Editor: Kazuhiko Kotani

Copyright © 2014 Rami Al Batran et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. P. Hujoel, M. Drangsholt, C. Spiekerman, and T. A. DeRouen, “Periodontal disease and coronary heart disease risk,” Journal of the American Medical Association, vol. 284, no. 11, pp. 1406–1410, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. S. C. Holt, L. Kesavalu, S. Walker, and C. A. Genco, “Virulence factors of Porphyromonas gingivalis,” Periodontology 2000, vol. 20, no. 1, pp. 168–238, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Li, E. Messas, E. L. Batista Jr., R. A. Levine, and S. Amar, “Porphyromonas gingivalis infection accelerates the progression of atherosclerosis in a heterozygous apolipoprotein E-deficient murine model,” Circulation, vol. 105, no. 7, pp. 861–867, 2002. View at Google Scholar · View at Scopus
  4. M. Leinonen and P. Saikku, “Evidence for infectious agents in cardiovascular disease and atherosclerosis,” The Lancet Infectious Diseases, vol. 2, no. 1, pp. 11–17, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Beck, R. Garcia, G. Heiss, P. S. Vokonas, and S. Offenbacher, “Periodontal disease and cardiovascular disease,” Journal of Periodontology, vol. 67, no. 10, pp. 1123–1137, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. F. C. Gibson III, C. Hong, H. Chou et al., “Innate immune recognition of invasive bacteria accelerates atherosclerosis in apolipoprotein E-deficient mice,” Circulation, vol. 109, no. 22, pp. 2801–2806, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. F. C. Gibson III, H. Yumoto, Y. Takahashi, H.-H. Chou, and C. A. Genco, “Innate immune signaling and Porphyromonas gingivalis-accelerated atherosclerosis,” Journal of Dental Research, vol. 85, no. 2, pp. 106–121, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Al Batran, F. Al-Bayaty, M. Ameen Abdulla et al., “Gastroprotective effects of Corchorus olitorius leaf extract against ethanol-induced gastric mucosal hemorrhagic lesions in rats,” Journal of Gastroenterology and Hepatology, vol. 28, no. 8, pp. 1321–1329, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Al Batran, F. Al-Bayaty, M. M. Jamil Al-Obaidi et al., “In vivo antioxidant and antiulcer activity of Parkia speciosa ethanolic leaf extract against ethanol-induced gastric ulcer in rats,” PLoS ONE, vol. 8, no. 5, Article ID e64751, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Al Batran, F. Al-Bayaty, M. M. J. Al-Obaidi, and M. A. Abdulla, “Acute toxicity and the effect of andrographolide on porphyromonas gingivalis-induced hyperlipidemia in rats,” BioMed Research International, vol. 2013, Article ID 594012, 7 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Al Batran, F. H. Al-Bayaty, and M. M. J. Al-Obaidi, “In-Vivo effect of andrographolide on alveolar bone resorption induced by Porphyromonas gingivalis and its relation with antioxidant enzymes,” BioMed Research International, vol. 2013, Article ID 276329, 6 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. S. M. Dhiyaaldeen, M. A. Alshawsh, S. M. Salama et al., “Potential activity of 3-(2-Chlorophenyl)-1-phenyl-propenonein accelerating wound healing in rats,” BioMed Research International, vol. 2014, Article ID 792086, 10 pages, 2014. View at Publisher · View at Google Scholar
  13. C. Y. Zhang and B. Tan, “Hypotensive activity of aqueous extract of Andrographis paniculata in rats,” Clinical and Experimental Pharmacology and Physiology, vol. 23, no. 8, pp. 675–678, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Zhang and B. K. Tan, “Antihyperglycaemic and anti-oxidant properties of Andrographis paniculata in normal and diabetic rats,” Clinical and Experimental Pharmacology and Physiology, vol. 27, no. 5-6, pp. 358–363, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. F. H. Al-Bayaty, M. A. Abdulla, M. I. A. Hassan, and H. M. Ali, “Effect of Andrographis paniculata leaf extract on wound healing in rats,” Natural Product Research, vol. 26, no. 5, pp. 423–429, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Q. Wasman, A. A. Mahmood, L. S. Chua, M. A. Alshawsh, and S. Hamdan, “Antioxidant and gastroprotective activities of Andrographis paniculata (Hempedu Bumi) in Sprague Dawley rats,” Indian Journal of Experimental Biology, vol. 49, no. 10, pp. 767–772, 2011. View at Google Scholar · View at Scopus
  17. E. Amroyan, E. Gabrielian, A. Panossian, G. Wikman, and H. Wagner, “Inhibitory effect of andrographolide from Andrographis paniculata on PAF-induced platelet aggregation,” Phytomedicine, vol. 6, no. 1, pp. 27–31, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. E. J. Sohn, C. Kim, Y. S. Kim et al., “Effects of magnolol (5,5′-diallyl-2,2′-dihydroxybiphenyl) on diabetic nephropathy in type 2 diabetic Goto-Kakizaki rats,” Life Sciences, vol. 80, no. 5, pp. 468–475, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Kumar, S. K. Prasad, S. Krishnamurthy, and S. Hemalatha, “Antihyperglycemic activity of Houttuynia cordata Thunb. in streptozotocin-induced diabetic rats,” Advances in Pharmacological Sciences, vol. 2014, Article ID 809438, 12 pages, 2014. View at Publisher · View at Google Scholar
  20. A. Orlandi, M. Marcellini, and L. G. Spagnoli, “Aging influences development and progression of early aortic atherosclerotic lesions in cholesterol-fed rabbits,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 4, pp. 1123–1136, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. S. G. Cremers, S. J. Wolffram, and P. D. Weinberg, “Atheroprotective effects of dietary l-arginine increase with age in cholesterol-fed rabbits,” British Journal of Nutrition, vol. 105, no. 10, pp. 1439–1447, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Sarkar, S. C. Lavania, D. N. Pandey, and M. C. Pant, “Changes in the blood lipid profile after administration of Ocimum sanctum (Tulsi) leaves in the normal albino rabbits,” Indian Journal of Physiology and Pharmacology, vol. 38, no. 4, pp. 311–312, 1994. View at Google Scholar · View at Scopus
  23. M. Seed, F. Hoppichler, D. Reaveley et al., “Relation of serum lipoprotein(a) concentration and apolipoprotein(a) phenotype to coronary heart disease in patients with familial hypercholesterolemia,” The New England Journal of Medicine, vol. 322, no. 21, pp. 1494–1499, 1990. View at Publisher · View at Google Scholar · View at Scopus
  24. A. L. Gould, J. E. Rossouw, N. C. Santanello, J. F. Heyse, and C. D. Furberg, “Cholesterol reduction yields clinical benefit: impact of statin trials,” Circulation, vol. 97, no. 10, pp. 946–952, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Reihnér, M. Rudling, D. Stahlberg et al., “Influence of pravastatin, a specific inhibitor of HMG-CoA reductase, on hepatic metabolism of cholesterol,” The New England Journal of Medicine, vol. 323, no. 4, pp. 224–228, 1990. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Kume, T. Kita, A. Mikami et al., “Induction of mRNA for low-density lipoprotein receptors in heterozygous watanabe heritable hyperlipidemic rabbits treated with CS-514 (pravastatin) and cholestyramine,” Circulation, vol. 79, no. 5, pp. 1084–1090, 1989. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Miyazaki and T. Koga, “Lipid lowering effects of pravastatin in common marmosets,” Arzneimittel-Forschung, vol. 48, no. 2, pp. 154–160, 1998. View at Google Scholar · View at Scopus
  28. V. A. Mustad, T. D. Etherton, A. D. Cooper et al., “Reducing saturated fat intake is associated with increased levels of LDL receptors on mononuclear cells in healthy men and women,” Journal of Lipid Research, vol. 38, no. 3, pp. 459–468, 1997. View at Google Scholar · View at Scopus
  29. K. L. Retsky, M. W. Freeman, and B. Frei, “Ascorbic acid oxidation product(s) protect human low density lipoprotein against atherogenic modification. Anti- rather than prooxidant activity of vitamin C in the presence of transition metal ions,” The Journal of Biological Chemistry, vol. 268, no. 2, pp. 1304–1309, 1993. View at Google Scholar · View at Scopus
  30. G. Assmann, H. Schulte, A. Von Eckardstein, and Y. Huang, “High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport,” Atherosclerosis, vol. 124, pp. S11–S20, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Tahara, H. Kai, M. Ishibashi et al., “Simvastatin Attenuates Plaque Inflammation: evaluation by Fluorodeoxyglucose Positron Emission Tomography,” Journal of the American College of Cardiology, vol. 48, no. 9, pp. 1825–1831, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. M. A. Hernández-Presa, M. Ó. Ortego, J. Tuñón et al., “Simvastatin reduces NF-κB activity in peripheral mononuclear and in plaque cells of rabbit atheroma more markedly than lipid lowering diet,” Cardiovascular Research, vol. 57, no. 1, pp. 168–177, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. G. K. Hansson and P. Libby, “The immune response in atherosclerosis: a double-edged sword,” Nature Reviews Immunology, vol. 6, no. 7, pp. 508–519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. V. Autieri, “Pro- and anti-inflammatory cytokine networks in atherosclerosis,” ISRN Vascular Medicine, vol. 2012, Article ID 987629, 17 pages, 2012. View at Publisher · View at Google Scholar
  35. K. Takahashi, M. Takeya, and N. Sakashita, “Multifunctional roles of macrophages in the development and progression of atherosclerosis in humans and experimental animals,” Medical Electron Microscopy, vol. 35, no. 4, pp. 179–203, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Lu, D. L. Rateri, D. L. Feldman et al., “Renin inhibition reduces hypercholesterolemia-induced atherosclerosis in mice,” Journal of Clinical Investigation, vol. 118, no. 3, pp. 984–993, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Pejcic, L. J. Kesic, and J. Milasin, “C-reactive protein as a systemic marker of inflammation in periodontitis,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 30, no. 3, pp. 407–414, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. H. J. Moshage, H. M. J. Roelofs, J. F. Van Pelt et al., “The effect of interleukin-1, interleukin-6 and its interrelationship on the synthesis of serum amyloid A and C-reactive protein in primary cultures of adult human hepatocytes,” Biochemical and Biophysical Research Communications, vol. 155, no. 1, pp. 112–117, 1988. View at Publisher · View at Google Scholar · View at Scopus
  39. S. M. A. Rahman, A.-M. van Dam, M. Schultzberg, and M. Crisby, “High cholesterol diet results in increased expression of interleukin-6 and caspase-1 in the brain of apolipoprotein E knockout and wild type mice,” Journal of Neuroimmunology, vol. 169, no. 1, pp. 59–67, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Zhang, D. Che, S. Zhao, and Y. Sun, “Effects of atorvastatin on C-reactive protein secretions by adipocytes in hypercholesterolemic rabbits,” Journal of Cardiovascular Pharmacology, vol. 50, no. 3, pp. 281–285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. H. A. Al-Aubaidy, H. A. Sahib, B. A. Mohammad, N. R. Hadi, and S. M. Abas, “Antiatherosclerotic potential of aliskiren: its antioxidant and anti-inflammatory effects in rabbits: a randomized controlled trial,” Journal of Pharmaceutical Technology and Drug Research, vol. 2, no. 1, p. 11, 2013. View at Google Scholar
  42. R. Altman, H. Ł. Luciardi, J. Muntaner et al., “Efficacy assessment of meloxicam, a preferential cyclooxygenase-2 inhibitor, in acute coronary syndromes without ST-segment elevation: the nonsteroidal anti-inflammatory drugs in unstable angina treatment-2 (NUT-2) pilot study,” Circulation, vol. 106, no. 2, pp. 191–195, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Kong, C. Luo, X. Li, Y. Zhou, and H. He, “The anti-inflammatory effect of kaempferol on early atherosclerosis in high cholesterol fed rabbits,” Lipids in Health and Disease, vol. 12, no. 1, article 115, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Musial, A. Undas, P. Gajewski, M. Jankowski, W. Sydor, and A. Szczeklik, “Anti-inflammatory effects of simvastatin in subjects with hypercholesterolemia,” International Journal of Cardiology, vol. 77, no. 2-3, pp. 247–253, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Zhao and D. Zhang, “Atorvastatin reduces interleukin-6 plasma concentration and adipocyte secretion of hypercholesterolemic rabbits,” Clinica Chimica Acta, vol. 336, no. 1-2, pp. 103–108, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. S. N. Han, L. S. Leka, A. H. Lichtenstein, L. M. Ausman, E. J. Schaefer, and S. N. Meydani, “Effect of hydrogenated and saturated, relative to polyunsaturated, fat on immune and inflammatory responses of adults with moderate hypercholesterolemia,” Journal of Lipid Research, vol. 43, no. 3, pp. 445–452, 2002. View at Google Scholar · View at Scopus
  47. Z. Mallat, S. Taleb, H. Ait-Oufella, and A. Tedgui, “The role of adaptive T cell immunity in atherosclerosis,” Journal of Lipid Research, vol. 50, pp. S364–S369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. H. C. Stary, A. B. Chandler, S. Glagov et al., “A definition of initial, fatty streak, and intermediate lesions of atherosclerosis: a report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association,” Arteriosclerosis and Thrombosis, vol. 14, no. 5, pp. 840–856, 1994. View at Publisher · View at Google Scholar · View at Scopus
  49. W. B. Kannel, W. P. Castelli, and T. Gordon, “Cholesterol in the prediction of atherosclerotic disease: new perspectives based on the Framingham study,” Annals of Internal Medicine, vol. 90, no. 1, pp. 85–91, 1979. View at Publisher · View at Google Scholar · View at Scopus
  50. P. D. Henry and K. I. Bentley, “Suppression of atherogenesis in cholesterol-fed rabbit treated with nifedipine,” Journal of Clinical Investigation, vol. 68, no. 5, pp. 1366–1369, 1981. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Bobek and Š. Galbavý, “Hypocholesterolemic and antiatherogenic effect of oyster mushroom (Pleurotus ostreatus) in rabbits,” Food/Nahrung, vol. 43, no. 5, pp. 339–342, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. E. B. Smith, “Transport, interactions and retention of plasma proteins in the intima: the barrier function of the internal elastic lamina,” European Heart Journal, vol. 11, pp. 72–81, 1990. View at Google Scholar · View at Scopus
  53. M. E. Rosenfeld and R. Ross, “Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 10, no. 5, pp. 680–687, 1990. View at Publisher · View at Google Scholar · View at Scopus