Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 725064, 11 pages
http://dx.doi.org/10.1155/2014/725064
Research Article

Statistical Optimization of Fibrinolytic Enzyme Production Using Agroresidues by Bacillus cereus IND1 and Its Thrombolytic Activity In Vitro

International Centre for Nanobiotechnology, Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamil Nadu 629 502, India

Received 28 February 2014; Accepted 3 May 2014; Published 9 June 2014

Academic Editor: Michael Kalafatis

Copyright © 2014 Ponnuswamy Vijayaraghavan and Samuel Gnana Prakash Vincent. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Mine, A. H. Kwan Wong, and B. Jiang, “Fibrinolytic enzymes in Asian traditional fermented foods,” Food Research International, vol. 38, no. 3, pp. 243–250, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. World Health Organization, “The World Health Report-Cardiovascular diseases (CVDs),” 2013.
  3. A. Banerjee, Y. Chisti, and U. C. Banerjee, “Streptokinase—a clinically useful thrombolytic agent,” Biotechnology Advances, vol. 22, no. 4, pp. 287–307, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Sumi, H. Hamada, K. Nakanishi, and H. Hiratani, “Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase,” Acta Haematologica, vol. 84, no. 3, pp. 139–143, 1990. View at Google Scholar · View at Scopus
  5. C. T. Wang, B. P. Ji, B. Li et al., “Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi,” Journal of Industrial Microbiology and Biotechnology, vol. 33, no. 9, pp. 750–758, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S.-B. Kim, D.-W. Lee, C.-I. Cheigh et al., “Purification and characterization of a fibrinolytic subtilisin-like protease of Bacillus subtilis TP-6 from an Indonesian fermented soybean, Tempeh,” Journal of Industrial Microbiology and Biotechnology, vol. 33, no. 6, pp. 436–444, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. C.-T. Chang, P.-M. Wang, Y.-F. Hung, and Y.-C. Chung, “Purification and biochemical properties of a fibrinolytic enzyme from Bacillus subtilis-fermented red bean,” Food Chemistry, vol. 133, no. 4, pp. 1611–1617, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Sumi, N. Nakajima, and C. Yatagai, “A unique strong fibrinolytic enzyme (katsuwokinase) in skipjack “Shiokara”, a Japanese traditional fermented food,” Comparative Biochemistry and Physiology B, vol. 112, no. 3, pp. 543–547, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. A. H. K. Wong and Y. Mine, “Novel fibrinolytic enzyme in fermented shrimp paste, a traditional Asian fermented seasoning,” Journal of Agricultural and Food Chemistry, vol. 52, no. 4, pp. 980–986, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Kamiya, M. Hagimori, M. Ogasawara, and M. Arakawa, “In vivo evaluation method of the effect of nattokinase on carrageenan-induced tail thrombosis in a rat model,” Acta Haematologica, vol. 124, no. 4, pp. 218–224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Johnvesly, B. R. Manjunath, and G. R. Naik, “Pigeon pea waste as a novel, inexpensive, substrate for production of a thermostable alkaline protease from thermoalkalophilic Bacillus sp. JB-99,” Bioresource Technology, vol. 82, no. 1, pp. 61–64, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. R. S. Prakasham, C. S. Rao, and P. N. Sarma, “Green gram husk-an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation,” Bioresource Technology, vol. 97, no. 13, pp. 1449–1454, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. K. Mukherjee, H. Adhikari, and S. K. Rai, “Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrica grass and potato peel as low-cost medium: characterization and application of enzyme in detergent formulation,” Biochemical Engineering Journal, vol. 39, no. 2, pp. 353–361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Pandey, C. R. Soccol, P. Nigam, D. Brand, R. Mohan, and S. Roussos, “Biotechnological potential of coffee pulp and coffee husk for bioprocesses,” Biochemical Engineering Journal, vol. 6, no. 2, pp. 153–162, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Tao, L. Peng, L. Beihui, L. Deming, and L. Zuohu, “Solid state fermentation of rice chaff for fibrinolytic enzyme production by Fusarium oxysporum,” Biotechnology Letters, vol. 19, no. 5, pp. 465–467, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. J.-H. Seo and S.-P. Lee, “Production of fibrinolytic enzyme from soybean grits fermented by Bacillus firmus NA-1,” Journal of Medicinal Food, vol. 7, no. 4, pp. 442–449, 2004. View at Google Scholar · View at Scopus
  17. V. P. B. Rekha, M. Ghosh, V. Adapa, S. J. Oh, K. K. Pulicherla, and K. R. S. Sambasiva Rao, “Optimization of polygalacturonase production from a newly isolated Thalassospira frigidphilosprofundus to use in pectin hydrolysis: statistical approach,” BioMed Research International, vol. 2013, Article ID 750187, 12 pages, 2013. View at Publisher · View at Google Scholar
  18. B. Kaur and R. Kaur, “Application of response surface methodology for optimizing arginine deiminase production medium for Enterococcus faecium sp. GR7,” The Scientific World Journal, vol. 2013, Article ID 892587, 12 pages, 2013. View at Publisher · View at Google Scholar
  19. Y. R. Abdel-Fattah, N. A. Soliman, N. M. El-Toukhy, H. El-Gendi, and R. S. Ahmed, “Production, purification, and characterization of thermostable α-amylase produced by Bacillus licheniformis isolate AI20,” Journal of Chemistry, vol. 2013, Article ID 673173, 11 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Siala, F. Frikha, S. Mhamdi, M. Nasri, and A. Sellami Kamoun, “Optimization of acid protease production by Aspergillus niger I1 on shrimp peptone using statistical experimental design,” The Scientific World Journal, vol. 2012, Article ID 564932, 11 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. K. A. Khalil, S. Mustafa, and R. Mohammad, “Optimization of milk-based medium for efficient cultivation of Bifidobacterium pseudocatenulatum G4 using face-centered central composite-response surface methodology,” BioMed Research International, vol. 2014, Article ID 787989, 10 pages, 2014. View at Publisher · View at Google Scholar
  22. J. Liu, J. Xing, T. Chang, Z. Ma, and H. Liu, “Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental methods,” Process Biochemistry, vol. 40, no. 8, pp. 2757–2762, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Astrup and S. Müllertz, “The fibrin plate method for estimating fibrinolytic activity,” Archives of Biochemistry and Biophysics, vol. 40, no. 2, pp. 346–351, 1952. View at Google Scholar · View at Scopus
  24. J. G. Holt, N. R. Krieg, P. H. Sneath, J. J. Stanley, and S. T. Williams, Bergey's Manual of Determinative Bacteriology, Williams and Wilkins, Baltimore, Md, USA, 1994.
  25. S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. M. L. Ansen, “The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin,” Journal of General Physiology, vol. 22, pp. 78–79, 1939. View at Google Scholar
  27. O. H. Lowry, N. J. Rasebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  28. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Dean and D. Vass, “Response surface methodology,” in Design and Analysis of Experiments, pp. 483–529, Springer, New York, NY, USA, 1999. View at Google Scholar
  30. V. Deepak, K. Kalishwaralal, S. Ramkumarpandian, S. V. Babu, S. R. Senthilkumar, and G. Sangiliyandi, “Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology,” Bioresource Technology, vol. 99, no. 17, pp. 8170–8174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. A. K. Mukherjee and S. K. Rai, “A statistical approach for the enhanced production of alkaline protease showing fibrinolytic activity from a newly isolated Gram-negative Bacillus sp. strain AS-S20-I,” New Biotechnology, vol. 28, no. 2, pp. 182–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Yuguo, W. Zhao, and C. Xiaolong, “Citric acid production from the mash of dried sweet potato with its dregs by Aspergillus niger in an external-loop airlift bioreactor,” Process Biochemistry, vol. 35, no. 3-4, pp. 237–242, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Peng, Q. Huang, R.-H. Zhang, and Y.-Z. Zhang, “Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food,” Comparative Biochemistry and Physiology B, vol. 134, no. 1, pp. 45–52, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. S.-H. Kim and N.-S. Choi, “Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp. strain DJ-4 screened from Doen-Jang,” Bioscience, Biotechnology and Biochemistry, vol. 64, no. 8, pp. 1722–1725, 2000. View at Google Scholar · View at Scopus
  35. S. H. Wang, C. Zhang, Y. L. Yang, M. Diao, and M. F. Bai, “Screening of a high fibrinolytic enzyme producing strain and characterization of the fibrinolytic enzyme produced from Bacillus subtilis LD-8547,” World Journal of Microbiology and Biotechnology, vol. 24, no. 4, pp. 475–482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Lee, A. Si-Kyung, D.-H. Bae et al., “Purification and characterization of a fibrinolytic enzyme from Bacillus sp. KDO-13 isolated from soybean paste,” Journal of Microbiology and Biotechnology, vol. 11, no. 5, pp. 845–852, 2001. View at Google Scholar · View at Scopus
  37. Y.-K. Jeong, J. H. Kim, S.-W. Gal et al., “Molecular cloning and characterization of the gene encoding a fibrinolytic enzyme from Bacillus subtilis Strain A1,” World Journal of Microbiology and Biotechnology, vol. 20, no. 7, pp. 711–717, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Wang, D. U. Ming, D. Zheng, F. Kong, G. Zu, and Y. Feng, “Purification and characterization of nattokinase from Bacillus subtilis natto B-12,” Journal of Agricultural and Food Chemistry, vol. 57, no. 20, pp. 9722–9729, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Yuan, J. Yang, Z. Zhuang, Y. Yang, L. Lin, and S. Wang, “Thrombolytic effects of Douchi Fibrinolytic enzyme from Bacillus subtilis LD-8547 in vitro and in vivo,” BMC Biotechnology, vol. 12, article 36, 2012. View at Publisher · View at Google Scholar · View at Scopus