Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 728289, 9 pages
http://dx.doi.org/10.1155/2014/728289
Research Article

High-Intensity Intermittent Swimming Improves Cardiovascular Health Status for Women with Mild Hypertension

1Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke’s Campus, University of Exeter, Exeter EX12LU, UK
2Department of Food and Nutrition, and Sport Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
3Department of Nutrition, Exercise and Sports, Copenhagen Centre for Team Sport and Health, University of Copenhagen, 2100 Copenhagen, Denmark
4The Faroese Confederation of Sports and Olympic Committee, 100 Torshavn, Faroe Islands
5Department of Nursing, Faculty of Natural and Health Sciences, University of the Faroe Islands, 100 Torshavn, Faroe Islands
6Southern Hospital, The Faroese Hospital System, Faroe Islands
7Department of Medicine, The Faroese National Hospital, 100 Torshavn, Faroe Islands
8Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
9Department of Occupational Medicine and Public Health, The Faroese Hospital System, 100 Torshavn, Faroe Islands

Received 21 January 2014; Revised 11 March 2014; Accepted 11 March 2014; Published 10 April 2014

Academic Editor: David G. Behm

Copyright © 2014 Magni Mohr et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. E. Manson, P. J. Skerrett, P. Greenland, and T. B. VanItallie, “The escalating pandemics of obesity and sedentary lifestyle: a call to action for clinicians,” Archives of Internal Medicine, vol. 164, no. 3, pp. 249–258, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. N. Blair, “Physical inactivity: the biggest public health problem of the 21st century,” British Journal of Sports Medicine, vol. 43, no. 1, pp. 1–2, 2009. View at Google Scholar · View at Scopus
  3. L. S. Pescatello, B. A. Franklin, R. Fagard, W. B. Farquhar, G. A. Kelley, and C. A. Ray, “American College of Sports Medicine position stand. Exercise and hypertension,” Medicine and Science in Sports and Exercise, vol. 36, no. 3, pp. 533–553, 2004. View at Google Scholar · View at Scopus
  4. V. A. Cornelissen and R. H. Fagard, “Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors,” Hypertension, vol. 46, no. 4, pp. 667–675, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Krustrup, P. R. Hansen, L. J. Andersen et al., “Long-term musculoskeletaland cardiac health effects of recreational football and running for premenopausal women,” Scandinavian Journal of Medicine & Science in Sports, vol. 20, supplement 1, pp. 58–71, 2010. View at Google Scholar · View at Scopus
  6. L. Nybo, E. Sundstrup, M. D. Jakobsen et al., “High-intensity training versus traditional exercise interventions for promoting health,” Medicine and Science in Sports and Exercise, vol. 42, no. 10, pp. 1951–1958, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. E. Tjønna, S. J. Lee, Ø. Rognmo et al., “Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study,” Circulation, vol. 118, no. 4, pp. 346–354, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Laurent, T. Daline, B. Malika et al., “Training-induced increase in nitric oxide metabolites in chronic heart failure and coronary artery disease: an extra benefit of water-based exercises?” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 16, no. 2, pp. 215–221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Tanaka, “Swimming exercise: impact of aquatic exercise on cardiovascular health,” Sports Medicine, vol. 39, no. 5, pp. 377–387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Nualnim, K. Parkhurst, M. Dhindsa, T. Tarumi, J. Vavrek, and H. Tanaka, “Effects of swimming training on blood pressure and vascular function in adults >50 years of age,” American Journal of Cardiology, vol. 109, no. 7, pp. 1005–1010, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Moholdt, M. Bekken, J. Grimsmo, S. A. Slørdahl, and U. Wisløff, “Home-based aerobic interval training improves peak oxygen uptake equal to residential cardiac rehabilitation: a randomized, controlled trial,” PLoS ONE, vol. 7, no. 7, Article ID e41199, 2012. View at Publisher · View at Google Scholar
  12. M. J. Gibala, “High-intensity interval training: a time-efficient strategy for health promotion?” Current Sports Medicine Reports, vol. 6, no. 4, pp. 211–213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. K. A. Burgomaster, K. R. Howarth, S. M. Phillips et al., “Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans,” Journal of Physiology, vol. 586, no. 1, pp. 151–160, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. E. Donnelly, S. N. Blair, J. M. Jakicic, M. M. Manore, J. W. Rankin, and B. K. Smith, “Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults,” Medicine and Science in Sports and Exercise, vol. 41, no. 2, pp. 459–471, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. W. L. Haskell, I.-M. Lee, R. R. Pate et al., “Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association,” Circulation, vol. 116, no. 9, pp. 1081–1093, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. K. S. Weston, U. Wisloff, and J. S. Coombes, “High-intensity interval training in patients with lifestyle-induced cardiometablic disease: a systematic review and meta-analysis,” British Journal of Sports Medicine, 2013. View at Publisher · View at Google Scholar
  17. R. S. Metcalfe, J. A. Babraj, S. G. Fawkner, and N. B. J. Vollaard, “Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training,” European Journal of Applied Physiology, vol. 112, no. 7, pp. 2767–2775, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. B. K. Pedersen and B. Saltin, “Evidence for prescribing exercise as therapy in chronic disease,” Scandinavian Journal of Medicine and Science in Sports, vol. 16, no. 1, pp. 3–63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Krustrup, P. Aagaard, L. Nybo, J. Petersen, M. Mohr, and J. Bangsbo, “Recreational football as a health promoting activity: a topical review,” Scandinavian Journal of Medicine & Science in Sports, vol. 20, pp. 1–13, 2010. View at Google Scholar · View at Scopus
  20. M. Mohr, A. Lindenskov, P. M. Holm et al., “Football training improves cardiovascular health in sedentary women with mild hypertension,” Scandinavian Journal of Medicine & Science in Sports. In press.
  21. M. Mohr, P. Krustrup, J. J. Nielsen et al., “Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development,” American Journal of Physiology: Regulatory Integrative and Comparative Physiology, vol. 292, no. 4, pp. R1594–R1602, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. F. M. Iaia, Y. Hellsten, J. J. Nielsen, M. Fernstrom, K. Sahlin, and J. Bangsbo, “Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume,” Journal of Applied Physiology, vol. 106, no. 1, pp. 73–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Krustrup, M. B. Randers, L. J. Andersen, S. R. Jackman, J. Bangsbo, and P. R. Hansen, “Soccer improves fitness and attenuates cardiovascular risk factors in hypertensive men,” Medicine & Science in Sports & Exercise, vol. 445, pp. 553–560, 2013. View at Publisher · View at Google Scholar
  24. P. Wiklund, F. Toss, L. Weinehall et al., “Abdominal and gynoid fat mass are associated with cardiovascular risk factors in men and women,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 11, pp. 4360–4366, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Bangsbo and M. Mohr, Fitness Testing in Football, Bangsbosport, 2012.
  26. P. S. Bradley, M. Mohr, M. Bendiksen et al., “Sub-maximal and maximal Yo-Yo intermittent endurance test level 2: heart rate response, reproducibility and application to elite soccer,” European Journal of Applied Physiology, vol. 111, no. 6, pp. 969–978, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. P. M. Kharal, P. N. Prasad, and R. P. Aacharya, “Gross correlation between waist hip ratio and blood sugar level in a village,” Journal of Nepal Medical Association, vol. 52, no. 190, pp. 361–364, 2013. View at Google Scholar
  28. H. Tanaka, D. R. Bassett Jr., E. T. Howley, D. L. Thompson, M. Ashraf, and F. L. Rawson, “Swimming training lowers the resting blood pressure in individuals with hypertension,” Journal of Hypertension, vol. 15, no. 6, pp. 651–657, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Nualnim, J. N. Barnes, T. Tarumi, C. P. Renzi, and H. Tanaka, “Comparison of central artery elasticity in swimmers, runners, and the sedentary,” American Journal of Cardiology, vol. 107, no. 5, pp. 783–787, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. P. Wallace, “Exercise in hypertension: a clinical review,” Sports Medicine, vol. 33, no. 8, pp. 585–598, 2003. View at Google Scholar · View at Scopus
  31. M. Sundstedt, T. Jonason, T. Ahrén, S. Damm, L. Wesslén, and E. Henriksen, “Left ventricular volume changes during supine exercise in young endurance athletes,” Acta Physiologica Scandinavica, vol. 177, no. 4, pp. 467–472, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Ishikawa, T. Ohta, J. Zhang, S. Hashimoto, and H. Tanaka, “Influence of age and gender on exercise training-induced blood pressure reduction in systemic hypertension,” American Journal of Cardiology, vol. 84, no. 2, pp. 192–196, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. L. A. Rocha, B. A. Petriz, D. H. Borges et al., “High molecular mass proteomics analyses of left ventricle from rats subjected to differential swimming training,” BMC Physiology, vol. 12, article 11, pp. 1–12, 2012. View at Publisher · View at Google Scholar
  34. R. H. Fagard and V. A. Cornelissen, “Effect of exercise on blood pressure control in hypertensive patients,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 14, no. 1, pp. 12–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. L. J. Andersen, P. R. Hansen, P. Søgaard, J. K. Madsen, J. Bech, and P. Krustrup, “Improvement of systolic and diastolic heart function after physical training in sedentary women,” Scandinavian Journal of Medicine & Science in Sports, vol. 20, supplement 1, pp. 50–57, 2010. View at Google Scholar · View at Scopus
  36. S. Barene, P. Krustrup, S. R. Jackman, O. L. Brekke, and A. Holtermann, “Do soccer and Zumba exercise improve fitness and indicators of health among female hospital employees? A 12-week RCT,” Scandinavian Journal of Medicine & Science in Sports, 2013. View at Publisher · View at Google Scholar
  37. A. E. Tjønna, T. O. Stølen, A. Bye et al., “Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents,” Clinical Science, vol. 116, no. 4, pp. 317–326, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. I. E. Schjerve, G. A. Tyldum, A. E. Tjønna et al., “Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults,” Clinical Science, vol. 115, no. 9, pp. 283–293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. S. R. Jackman, S. Scott, M. B. Randers et al., “Musculoskeletal health profile for elite female footballers versus untrained young women before and after 16 weeks of of football training,” Journal of Sports Sciences, vol. 31, no. 13, pp. 1468–1474, 2013. View at Publisher · View at Google Scholar
  40. E. G. Trapp, D. J. Chisholm, J. Freund, and S. H. Boutcher, “The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women,” International Journal of Obesity, vol. 32, no. 4, pp. 684–691, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. R. E. K. MacPherson, T. J. Hazell, T. D. Olver, D. H. Paterson, and P. W. R. Lemon, “Run sprint interval training improves aerobic performance but not maximal cardiac output,” Medicine and Science in Sports and Exercise, vol. 43, no. 1, pp. 115–122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. J. B. Gillen and M. J. Gibala, “Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness,” Applied Physiology, Nutrition and Metabolism, vol. 39, no. 3, pp. 409–412, 2014. View at Google Scholar
  43. P. T. Katzmarzyk, J. Gagnon, A. S. Leon et al., “Fitness, fatness, and estimated coronary heart disease risk: the HERITAGE Family Study,” Medicine and Science in Sports and Exercise, vol. 33, no. 4, pp. 585–590, 2001. View at Google Scholar · View at Scopus
  44. I. Holmér, “Oxygen uptake during swimming in man,” Journal of Applied Physiology, vol. 33, no. 4, pp. 502–509, 1972. View at Google Scholar · View at Scopus
  45. B. O. Eriksson, I. Engstrom, and P. Karlberg, “Long-term effect of previous swimtraining in girls. A 10-year follow-up of the ‘girl swimmers‘,” Acta Paediatrica Scandinavica, vol. 67, no. 3, pp. 285–292, 1978. View at Google Scholar · View at Scopus
  46. J. Bangsbo, F. M. Iaia, and P. Krustrup, “The Yo-Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports,” Sports Medicine, vol. 38, no. 1, pp. 37–51, 2008. View at Google Scholar · View at Scopus
  47. P. S. Bradley, M. Bendiksen, and A. Dellal, “The application of the Yo-Yo Intermittent Endurnace level 2 testto elite female soccer populations,” Scandinavian Journal of Medicine & Science in Sports, vol. 24, no. 1, pp. 43–54. View at Publisher · View at Google Scholar
  48. P. Krustrup, K. Söderlund, M. Mohr, J. González-Alonso, and J. Bangsbo, “Recruitment of fibre types and quadriceps muscle portions during repeated, intense knee-extensor exercise in humans,” Pflugers Archiv European Journal of Physiology, vol. 449, no. 1, pp. 56–65, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Krustrup, K. Söderlund, M. Mohr, and J. Bangsbo, “The slow component of oxygen uptake during intense, sub-maximal exercise in man is associated with additional fibre recruitment,” Pflugers Archiv European Journal of Physiology, vol. 447, no. 6, pp. 855–866, 2004. View at Publisher · View at Google Scholar · View at Scopus