Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 729618, 9 pages
http://dx.doi.org/10.1155/2014/729618
Research Article

Description of a Novel Adhesin of Mycobacterium avium Subsp. paratuberculosis

1Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, 1686 Hurlingham, Buenos Aires, Argentina
2Instituto de Estudios de la Inmunidad Humoral (IDEHU), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Ciudad Autónoma de Buenos Aires, Argentina

Received 7 March 2014; Accepted 29 June 2014; Published 22 July 2014

Academic Editor: Armando Acosta

Copyright © 2014 Mariana Noelia Viale et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Cocito, P. Gilot, M. Coene, M. de Kesel, P. Poupart, and P. Vannuffel, “Paratuberculosis,” Clinical Microbiology Reviews, vol. 7, no. 3, pp. 328–345, 1994. View at Google Scholar · View at Scopus
  2. E. Momotani, D. L. Whipple, A. B. Thiermann, and N. F. Cheville, “Role of M cells and macrophages in the entrance of Mycobacterium paratuberculosis into domes of ileal Peyer's patches in calves.,” Veterinary Pathology, vol. 25, no. 2, pp. 131–137, 1988. View at Publisher · View at Google Scholar · View at Scopus
  3. Ó. G. Sigurđardóttir, C. M. Press, and Ø. Evensen, “Uptake of Mycobacterium avium subsp. paratuberculosis through the distal small intestinal mucosa in goats: an ultrastructural study,” Veterinary Pathology, vol. 38, pp. 184–189, 2001. View at Google Scholar
  4. T. E. Secott, T. L. Lin, and C. C. Wu, “Mycobacterium avium subsp. paratuberculosis fibronectin attachment protein facilitates M-cell targeting and invasion through a fibronectin bridge with host integrins,” Infection and Immunity, vol. 72, no. 7, pp. 3724–3732, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Joh, E. R. Wann, B. Kreikemeyer, P. Speziale, and M. Höök, “Role of fibronectin-binding MSCRAMMs in bacterial adherence and entry into mammalian cells,” Matrix Biology, vol. 18, no. 3, pp. 211–223, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Abou-Zeid, T. Garbe, R. Lathigra et al., “Genetic and immunological analysis of Mycobacterium tuberculosis fibronectin-binding proteins,” Infection and Immunity, vol. 59, no. 8, pp. 2712–2718, 1991. View at Google Scholar · View at Scopus
  7. A. Gioffré, G. Echeverría-Valencia, A. Arese et al., “Characterization of the Apa antigen from M. avium subsp. paratuberculosis: a conserved Mycobacterium antigen that elicits a strong humoral response in cattle,” Veterinary Immunology and Immunopathology, vol. 132, no. 2–4, pp. 199–208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. J. Shin, C. F. Chang, S. P. McDonough, B. Thompson, H. S. Yoo, and Y. Chang, “In vitro cellular immune responses to recombinant antigens of Mycobacterium avium subsp. paratuberculosis,” Infection and Immunity, vol. 73, no. 8, pp. 5074–5085, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Mullerad, I. Michal, Y. Fishman, A. Hovav, R. G. Barletta, and H. Bercovier, “The immunogenicity of Mycobacterium paratuberculosis 85B antigen,” Medical Microbiology and Immunology, vol. 190, no. 4, pp. 179–187, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Ghosh, K. Chakraborty, T. Nagaraja et al., “An adhesion protein of Salmonella enterica serovar Typhi is required for pathogenesis and potential target for vaccine development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 8, pp. 3348–3353, 2011. View at Google Scholar
  11. C. Abou-Zeid, T. L. Ratliff, H. G. Wiker, M. Harboe, J. Bennedsen, and G. A. W. Rook, “Characterization of fibronectin-binding antigens released by Mycobacterium tuberculosis and Mycobacterium bovis BCG,” Infection and Immunity, vol. 56, no. 12, pp. 3046–3051, 1988. View at Google Scholar · View at Scopus
  12. J. E. R. Thole, R. Schöningh, A. A. M. Janson et al., “Molecular and immunological analysis of a fibronectin-binding protein antigen secreted by Mycobacterium leprae,” Molecular Microbiology, vol. 6, no. 2, pp. 153–163, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Kitaura, N. Ohara, M. Naito, K. Kobayashi, and T. Yamada, “Fibronectin-binding proteins secreted by Mycobacterium avium,” APMIS, vol. 108, no. 9, pp. 558–564, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Dheenadhayalan, K. Shin, C. Chang et al., “Cloning and characterization of the genes coding for antigen 85A, 85B and 85C of Mycobacterium avium subsp. paratuberculosis,” Mitochondrial DNA, vol. 13, no. 5, pp. 287–294, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. C. J. Kuo, H. Bell, C. L. Hsieh, C. P. Ptak, and Y. F. Chang, “Novel mycobacteria antigen 85 complex binding motif on fibronectin,” The Journal of Biological Chemistry, vol. 287, no. 3, pp. 1892–1902, 2012. View at Publisher · View at Google Scholar
  16. S. L. Baldwin, C. D. D'Souza, I. M. Orme et al., “Immunogenicity and protective efficacy of DNA vaccines encoding secreted and non-secreted forms of Mycobacterium tuberculosis Ag85A,” Tubercle and Lung Disease, vol. 79, no. 4, pp. 251–259, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. A. T. Kamath, C. G. Feng, M. Macdonald, H. Briscoe, and W. J. Britton, “Differential protective efficacy of DNA vaccines expressing secreted proteins of Mycobacterium tuberculosis,” Infection and Immunity, vol. 67, no. 4, pp. 1702–1707, 1999. View at Google Scholar · View at Scopus
  18. J. T. Belisle, V. D. Vissa, T. Sievert, K. Takayama, P. J. Brennan, and G. S. Besra, “Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis,” Science, vol. 276, no. 5317, pp. 1420–1422, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. T. L. Ratliff, R. McCarthy, W. B. Telle, and E. J. Brown, “Purification of a mycobacterial adhesin for fibronectin,” Infection and Immunity, vol. 61, no. 5, pp. 1889–1894, 1993. View at Google Scholar · View at Scopus
  20. J. S. Schorey, Q. Li, D. W. McCourt et al., “A Mycobacterium leprae gene encoding a fibronectin binding protein is used for efficient invasion of epithelial cells and Schwann cells,” Infection and Immunity, vol. 63, no. 7, pp. 2652–2657, 1995. View at Google Scholar · View at Scopus
  21. J. S. Schorey, M. A. Holsti, T. L. Ratliff, P. M. Allen, and E. J. Brown, “Characterization of the fibronectin-attachment protein of Mycobacterium avium reveals a fibronectin-binding motif conserved among mycobacteria,” Molecular Microbiology, vol. 21, no. 2, pp. 321–329, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. T. E. Secott, T. L. Lin, and C. C. Wu, “Fibronectin attachment protein homologue mediates fibronectin binding by Mycobacterium avium subsp. paratuberculosis,” Infection and Immunity, vol. 69, no. 4, pp. 2075–2082, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. T. E. Secott, T. L. Lin, and C. C. Wu, “Fibronectin attachment protein is necessary for efficient attachment and invasion of epithelial cells by Mycobacterium avium subsp. paratuberculosis,” Infection and Immunity, vol. 70, no. 5, pp. 2670–2675, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. S. L. Jun, J. S. Sung, M. T. Collins et al., “Mycobacterium avium subsp. paratuberculosis fibronectin attachment protein activates dendritic cells and induces a Th1 polarization,” Infection and Immunity, vol. 77, no. 7, pp. 2979–2988, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. G. R. Hirschfield, M. McNeil, and P. J. Brennan, “Peptidoglycan-associated polypeptides of Mycobacterium tuberculosis,” Journal of Bacteriology, vol. 172, no. 2, pp. 1005–1013, 1990. View at Google Scholar · View at Scopus
  26. W. Xolalpa, A. J. Vallecillo, M. Lara et al., “Identification of novel bacterial plasminogen-binding proteins in the human pathogen Mycobacterium tuberculosis,” Proteomics, vol. 7, no. 18, pp. 3332–3341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. J. D. A. van Embden, D. van Soolingen, P. M. Small, and P. W. M. Hermans, “Genetic markers for the epidemiology of tuberculosis,” Research in Microbiology, vol. 143, no. 4, pp. 385–391, 1992. View at Publisher · View at Google Scholar · View at Scopus
  28. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Karlsson, A. Michaelsson, and L. Mattsson, “Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system,” Journal of Immunological Methods, vol. 145, no. 1-2, pp. 229–240, 1991. View at Publisher · View at Google Scholar · View at Scopus
  30. S. F. Dallo, T. R. Kannan, M. W. Blaylock, and J. B. Baseman, “Elongation factor Tu and E1 β subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae,” Molecular Microbiology, vol. 46, no. 4, pp. 1041–1051, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. S. F. Dallo, B. Zhang, J. Denno et al., “Association of Acinetobacter baumannii EF-Tu with cell surface, outer membrane vesicles, and fibronectin,” The Scientific World Journal, vol. 2012, Article ID 128705, 10 pages, 2012. View at Publisher · View at Google Scholar
  32. S. Balasubramanian, T. R. Kannan, and J. B. Baseman, “The surface-exposed carboxyl region of Mycoplasma pneumoniae elongation factor Tu interacts with fibronectin,” Infection and Immunity, vol. 76, no. 7, pp. 3116–3123, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Balasubramanian, T. R. Kannan, P. J. Hart, and J. B. Baseman, “Amino acid changes in elongation factor Tu of Mycoplasma pneumoniae and Mycoplasma genitalium influence fibronectin binding,” Infection and Immunity, vol. 77, no. 9, pp. 3533–3541, 2009. View at Google Scholar
  34. Z. He and J. de Buck, “Localization of proteins in the cell wall of Mycobacterium avium subsp. paratuberculosis K10 by proteomic analysis,” Proteome Science, vol. 8, article 21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. K. G. Mawuenyega, C. V. Forst, K. M. Dobos et al., “Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling,” Molecular Biology of the Cell, vol. 16, no. 1, pp. 396–404, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Gu, J. Chen, K. M. Dobos, E. M. Bradbury, J. T. Belisle, and X. Chen, “Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain,” Molecular and Cellular Proteomics, vol. 2, no. 12, pp. 1284–1296, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Schaumburg, O. Diekmann, P. Hagendorff et al., “The cell wall subproteome of Listeria monocytogenes,” Proteomics, vol. 4, no. 10, pp. 2991–3006, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. R. S. Mendes, M. von Atzingen, Z. M. de Morais et al., “The novel leptospiral surface adhesin Lsa20 binds laminin and human plasminogen and is probably expressed during infection,” Infection and Immunity, vol. 79, no. 11, pp. 4657–4667, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. G. R. Jacobson and J. P. Rosenbusch, “Abundance and membrane association of elongation factor Tu in E. coli,” Nature, vol. 261, no. 5555, pp. 23–26, 1976. View at Publisher · View at Google Scholar · View at Scopus
  40. C. C. Young and R. W. Bernlohr, “Elongation factor Tu is methylated in response to nutrient deprivation in Escherichia coli,” Journal of Bacteriology, vol. 173, no. 10, pp. 3096–3100, 1991. View at Google Scholar · View at Scopus
  41. M. A. M. Marques, S. Chitale, P. J. Brennan, and M. C. V. Pessolani, “Mapping and identification of the major cell wall-associated components of Mycobacterium leprae,” Infection and Immunity, vol. 66, no. 6, pp. 2625–2631, 1998. View at Google Scholar · View at Scopus
  42. S. F. Porcella, R. J. Belland, and R. C. Judd, “Identification of an EF-Tu protein that is periplasm-associated and processed in Neisseria gonorrhoeae,” Microbiology, vol. 142, no. 9, pp. 2481–2489, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. B. D. Beck, P. G. Arscott, and A. Jacobson, “Novel properties of bacterial elongation factor Tu,” Proceedings of the National Academy of Sciences of the United States of America, vol. 75, no. 3, pp. 1250–1254, 1978. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Granato, G. E. Bergonzelli, R. D. Pridmore, L. Marvin, M. Rouvet, and I. E. Corthésy-Theulaz, “Cell surface-associated elongation factor tu mediates the attachment of lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins,” Infection and Immunity, vol. 72, no. 4, pp. 2160–2169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Kunert, J. Losse, C. Gruszin et al., “Immune evasion of the human pathogen Pseudomonas aeruginosa: elongation factor Tuf is a factor H and plasminogen binding protein,” Journal of Immunology, vol. 179, no. 5, pp. 2979–2988, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Bergmann, M. Rohde, G. S. Chhatwal, and S. Hammerschmidt, “α-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface,” Molecular Microbiology, vol. 40, no. 6, pp. 1273–1287, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. V. Pancholi and V. A. Fischetti, “A major surface protein on group a streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity,” Journal of Experimental Medicine, vol. 176, no. 2, pp. 415–426, 1992. View at Publisher · View at Google Scholar · View at Scopus