Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 734946, 9 pages
http://dx.doi.org/10.1155/2014/734946
Research Article

Chemical Composition, Leishmanicidal and Cytotoxic Activities of the Essential Oils from Mangifera indica L. var. Rosa and Espada

1Departamento de Antibióticos, Universidade Federal de Pernambuco, 50670-420 Recife, PE, Brazil
2 Departamento de Ciências Moleculares, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil
3Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, 50670-420 Recife, PE, Brazil
4Departamento de Microbiologia, Centro de Pesquisa Aggeu Magalh, FIOCRUZ, 50670-420 Recife, PE, Brazil

Received 27 February 2014; Revised 17 June 2014; Accepted 18 June 2014; Published 20 July 2014

Academic Editor: Silvia R. B. Uliana

Copyright © 2014 Eduardo H. S. Ramos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. P. de Albuquerque, P. M. de Medeiros, A. L. S. de Almeida et al., “Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: a quantitative approach,” Journal of Ethnopharmacology, vol. 114, no. 3, pp. 325–354, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Rodeiro, M. T. Donato, N. Jiménez, G. Garrido, R. Delgado, and M. J. Gómez-Lechón, “Effects of Mangifera indica L. aqueous extract (Vimang) on primary culture of rat hepatocytes,” Food and Chemical Toxicology, vol. 45, no. 12, pp. 2506–2512, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. G. L. Pardo-Andreu, M. F. Barrios, C. Curti et al., “Protective effects of Mangifera indica L extract (Vimang), and its major component mangiferin, on iron-induced oxidative damage to rat serum and liver,” Pharmacological Research, vol. 57, no. 1, pp. 79–86, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. E. H. A. Andrade, J. G. S. Maia, and M. D. G. B. Zoghbi, “Aroma volatile constituents of Brazilian varieties of mango fruit,” Journal of Food Composition and Analysis, vol. 13, no. 1, pp. 27–33, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. O. J. Alwala, W. Wanzala, R. A. Inyambukho, E. M. Osundwa, and I. O. Ndiege, “Characterization and evaluation of repellent effect of essential oil of Mangifera indica L. from Kenya,” Journal of Essential Oil-Bearing Plants, vol. 13, no. 1, pp. 85–96, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. H. Ansari, M. Ali, A. Velasco-Negueruela, and M. J. Pérez-Alonso, “Volatile constituents of the fruits of three mango cultivars, Mangifera indica L.,” Journal of Essential Oil Research, vol. 11, no. 1, pp. 65–68, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. S. H. Ansari, M. Ali, A. Velasco-Negueruela, and M. J. Perez-Alonso, “Volatile constituents of Mango (Mangifera indica) fruits cultivar Bombay,” Journal of Medicinal and Aromatic Plant Sciences, vol. 21, no. 1, pp. 931–933, 1999. View at Google Scholar
  8. S. H. Ansari, M. Ali, A. Velasco-Negueruela, and M. J. Perez-Alonso, “Characterization of volatile constituents of mango “Qalmi” (Mangifera indica L.) fruit,” Journal of Essential Oil Research, vol. 16, no. 5, pp. 417–419, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. M. R. B. Franco, D. Rodriguez-Amaya, and F. M. F. Lanças, “Compostos voláteis de três cultivares de manga (Mangifera Indica L.),” Food Science and Technology, vol. 24, no. 2, pp. 165–169, 2004. View at Google Scholar
  10. J. A. Pino, J. Mesa, Y. Muñoz, M. P. Martí, and R. Marbot, “Volatile components from mango (Mangifera indica L.) cultivars,” Journal of Agricultural and Food Chemistry, vol. 53, no. 6, pp. 2213–2223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Pino and J. Mesa, “Contribution of volatile compounds to mango (Mangifera indica L.) aroma,” Flavour and Fragrance Journal, vol. 21, no. 2, pp. 207–213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Tamura, S. Boonbumrung, T. Yoshizawa, and W. Varanyanond, “Volatile components of the essential oils in the pulp of four yellow mangoes (Mangifera indica L.) in Thailand,” Food Science and Technology Research, vol. 6, no. 1, pp. 68–73, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. WHO, “Control of leishmaniasis. Report of the expert committee,” Tech. Rep. Ser 949, World Health Organization, 2010. View at Google Scholar
  14. R. Lainson and J. J. Shaw, “Evolution, classification and geographical distribution,” in The Leishmaniases in Biologyand Medicine, W. Peters and E. Killick-Kendrick, Eds., pp. 1–120, Academic Press, London, UK, 1987. View at Google Scholar
  15. A. J. Davis, H. W. Murray, and E. Handman, “Drugs against leishmaniasis: a synergy of technology and partnerships,” Trends in Parasitology, vol. 20, no. 2, pp. 73–76, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Goto and J. A. L. Lindoso, “Current diagnosis and treatment of cutaneous and mucocutaneous leishmaniasis,” Expert Review of Anti-Infective Therapy, vol. 8, no. 4, pp. 419–433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Polonio and T. Efferth, “Leishmaniasis: drug resistance and natural products (review),” International Journal of Molecular Medicine, vol. 22, no. 3, pp. 277–286, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Berman, “Current treatment approaches to leishmaniasis,” Current Opinion in Infectious Diseases, vol. 16, no. 5, pp. 397–401, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Sen and M. Chatterjee, “Plant derived therapeutics for the treatment of Leishmaniasis,” Phytomedicine, vol. 18, no. 12, pp. 1056–1069, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. L. G. Rocha, J. R. G. S. Almeida, R. O. Macêdo, and J. M. Barbosa-Filho, “A review of natural products with antileishmanial activity,” Phytomedicine, vol. 12, no. 6-7, pp. 514–535, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Rhayour, T. Bouchikhi, A. Tantaoui-Elaraki, K. Sendide, and A. Remmal, “The mechanism of bactericidal action of oregano and clove essential oils and of their phenolic major components on Escherichia coli and Bacillus subtilis,” Journal of Essential Oil Research, vol. 15, no. 5, pp. 356–362, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Kulevanova, A. Kaftandzieva, A. Dimitrovska, G. Stefkov, T. Grdanoska, and N. Panovski, “Investigation of antimicrobial activity of essential oils of several Macedonian Thymus L. species (Lamiaceae),” Bollettino Chimico Farmaceutico, vol. 139, no. 6, pp. 276–280, 2000. View at Google Scholar · View at Scopus
  23. M. Marino, C. Bersani, and G. Comi, “Antimicrobial activity of the essential oils of Thymus vulgaris L. measured using a bioimpedometric method,” Journal of Food Protection, vol. 62, no. 9, pp. 1017–1023, 1999. View at Google Scholar · View at Scopus
  24. M. D. G. F. de Medeiros, A. C. da Silva, A. M. D. G. L. Citó et al., “In vitro antileishmanial activity and cytotoxicity of essential oil from Lippia sidoides Cham,” Parasitology International, vol. 60, no. 3, pp. 237–241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. D. S. S. Rosa, R. R. Mendonça-Filho, H. R. Bizzo et al., “Antileishmanial activity of a linalool-rich essential oil from Croton cajucara,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 6, pp. 1895–1901, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. V. D. Zheljazkov, C. L. Cantrell, B. Tekwani, and S. I. Khan, “Content, composition, and bioactivity of the essential oils of three basil genotypes as a function of harvesting,” Journal of Agricultural and Food Chemistry, vol. 56, no. 2, pp. 380–385, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Mikus, M. Harkenthal, D. Steverding, and J. Reichling, “In vitro effect of essential oils and isolated mono- and sesquiterpenes on Leishmania major and Trypanosoma brucei,” Planta Medica, vol. 66, no. 4, pp. 366–368, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. R. A. Mothana, M. S. Al-Said, M. A. Al-Yahya, A. J. Al-Rehaily, and J. M. Khaled, “GC and GC/MS analysis of essential oil composition of the endemic Soqotraen Leucas virgata Balf.f. and its antimicrobial and antioxidant activities,” International Journal of Molecular Sciences, vol. 14, no. 11, pp. 23129–23139, 2013. View at Publisher · View at Google Scholar
  29. J. F. Sanchez-Suarez, I. Riveros, and G. Delgado, “Evaluation of the leishmanicidal and cytotoxic potential of essential oils derived from ten Colombian plants,” Iranian Journal of Parasitology, vol. 8, no. 1, pp. 129–136, 2013. View at Google Scholar · View at Scopus
  30. M. A. Fuertes, P. A. Nguewa, J. Castilla, C. Alonso, and J. M. Pérez, “Anticancer compounds as leishmanicidal drugs: challenges in Chemotherapy and future perspectives,” Current Medicinal Chemistry, vol. 15, no. 5, pp. 433–439, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. H. van den Dool and P. Dec. Kratz, “A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography,” Journal of Chromatography A, vol. 11, pp. 463–471, 1963. View at Publisher · View at Google Scholar · View at Scopus
  32. O. D. Sparkman, “Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy Robert P. Adams,” Journal of the American Society for Mass Spectrometry, vol. 16, no. 11, pp. 1902–1903, 2005. View at Google Scholar
  33. M. D. G. F. de Medeiros, A. C. da Silva, A. M. D. G. L. Citó et al., “In vitro antileishmanial activity and cytotoxicity of essential oil from Lippia sidoides Cham,” Parasitology International, vol. 60, no. 3, pp. 237–241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Publisher · View at Google Scholar · View at Scopus
  35. B. R. Loveys, S. P. Robinson, J. J. Brophy, and E. K. Chacko, “Mango Sapburn: components of fruit sap and their role in causing skin damage,” Australian Journal of Plant Physiology, vol. 19, no. 5, pp. 449–457, 1992. View at Publisher · View at Google Scholar
  36. K. Saby John, L. Jagan Mohan Rao, S. G. Bhat, and U. J. S. Prasada Rao, “Characterization of aroma components of sap from different Indian mango varieties,” Phytochemistry, vol. 52, no. 5, pp. 891–894, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. H. W. Wang, Y. Q. Liu, S. L. Wei, Z. J. Yan, and K. Lu, “Comparison of microwave-assisted and conventional hydrodistillation in the extraction of essential oils from mango (Mangifera indica L.) flowers,” Molecules, vol. 15, no. 11, pp. 7715–7723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. I. T. F. Macedo, C. M. L. Bevilaqua, L. M. B. de Oliveira et al., “Anthelmintic effect of Eucalyptus staigeriana essential oil against goat gastrointestinal nematodes,” Veterinary Parasitology, vol. 173, no. 1-2, pp. 93–98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. O. Santos, A. C. Santin, M. U. Yamaguchi et al., “Antileishmanial activity of an essential oil from the leaves and flowers of Achillea millefolium,” Annals of Tropical Medicine and Parasitology, vol. 104, no. 6, pp. 475–483, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Otoguro, M. Iwatsuki, A. Ishiyama et al., “In vitro antitrypanosomal activity of plant terpenes against Trypanosoma brucei,” Phytochemistry, vol. 72, no. 16, pp. 2024–2030, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. G. F. Santoro, M. G. Cardoso, L. G. L. Guimarães, J. M. Freire, and M. J. Soares, “Anti-proliferative effect of the essential oil of Cymbopogon citratus (DC) Stapf (lemongrass) on intracellular amastigotes, bloodstream trypomastigotes and culture epimastigotes of Trypanosoma cruzi (Protozoa: Kinetoplastida),” Parasitology, vol. 134, no. 11, pp. 1649–1656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. Schelz, J. Hohmann, and J. Molnar, “Recent advances in research of antimicrobial effects of essential oils and plant derived compounds on bacteria,” in Ethnomedicine: A Source of Complementary Therapeutics, D. Chattopadhyay, Ed., pp. 281–304, Research Signpost, Kerala, India, 2010. View at Google Scholar
  43. S. A. Burt, R. Vlielander, H. P. Haagsman, and E. J. A. Veldhuizen, “Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157:H7 by addition of food stabilizers,” Journal of Food Protection, vol. 68, no. 5, pp. 919–926, 2005. View at Google Scholar · View at Scopus
  44. K. Knobloch, A. Pauli, B. Iberl, H. Weigand, and N. Weis, “Antibacterial and antifungal properties of essential oil componentes,” Journal of Essential Oil Research, vol. 1, no. 3, pp. 118–119, 1989. View at Google Scholar
  45. F. Bakkali, S. Averbeck, D. Averbeck, and M. Idaomar, “Biological effects of essential oils—a review,” Food and Chemical Toxicology, vol. 46, no. 2, pp. 446–475, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Suffness and J. M. Pezzuto, “Assays for bioactivity,” in Methods in Plant Biochemistry, K. Hostettmann, Ed., vol. 6, pp. 71–133, Academic Press, London, UK, 1991. View at Google Scholar
  47. E. Ipek, H. Zeytinoglu, S. Okay, B. A. Tuylu, M. Kurkcuoglu, and K. H. C. Baser, “Genotoxicity and antigenotoxicity of Origanum oil and carvacrol evaluated by Ames Salmonella/microsomal test,” Food Chemistry, vol. 93, no. 3, pp. 551–556, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. C. F. Carson, B. J. Mee, and T. V. Riley, “Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureusdetermined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 6, pp. 1914–1920, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. R. di Pasqua, N. Hoskins, G. Betts, and G. Mauriello, “Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media,” Journal of Agricultural and Food Chemistry, vol. 54, no. 7, pp. 2745–2749, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Sikkema, J. A. M. de Bont, and B. Poolman, “Mechanisms of membrane toxicity of hydrocarbons,” Microbiological Reviews, vol. 59, no. 2, pp. 201–222, 1995. View at Google Scholar · View at Scopus
  51. A. E. Vercesi, A. J. Kowaltowski, M. T. Grijalba, A. R. Meinicke, and R. F. Castilho, “The role of reactive oxygen species in mitochondrial permeability transition,” Bioscience Reports, vol. 17, no. 1, pp. 43–52, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. J. S. Armstrong, “Mitochondrial membrane permeabilization: the sine qua non for cell death,” BioEssays, vol. 28, no. 3, pp. 253–260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Sacchetti, S. Maietti, M. Muzzoli et al., “Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods,” Food Chemistry, vol. 91, no. 1, pp. 621–632, 2005. View at Publisher · View at Google Scholar · View at Scopus