Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 736786, 6 pages
http://dx.doi.org/10.1155/2014/736786
Research Article

Low Levels of CD36 in Peripheral Blood Monocytes in Subclinical Atherosclerosis in Rheumatoid Arthritis: A Cross-Sectional Study in a Mexican Population

1Instituto de Investigación en Reumatología y del Sistema Musculo Esquelético, Centro Universitario de Ciencias de la Salud, Benemérita Universidad de Guadalajara, Sierra Mojada No. 950, Colonia Independencia, 44340 Guadalajara, JAL, Mexico
2Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Benemérita Universidad de Guadalajara, Sierra Mojada No. 950, Colonia Independencia, 44340 Guadalajara, JAL, Mexico
3Servivio de Radiología e Imagen, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Benemérita Universidad de Guadalajara, Hospital No. 278, 44280 Guadalajara, JAL, Mexico
4Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Benemérita Universidad de Guadalajara, Sierra Mojada No. 950, Colonia Independencia, 44340 Guadalajara, JAL, Mexico
5Departamento de Medicina Interna-Reumatología, Hospital General Regional No. 110, Instituto Mexicano del Seguro Social, ICircunvalación Oblatos No. 2212, Colonia Oblatos, 44700 Guadalajara, JAL, Mexico
6Unidad Médica de Alta Especialidad, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Belisario Domínguez No. 1000, Independencia Oriente, 44340 Guadalajara, JAL, Mexico
7Servicio de Reumatología, Hospital Civil “Dr. Juan I. Menchaca”, Benemérita Universidad de Guadalajara, Salvador de Quevedo No. 750, 44100 Guadalajara, JAL, Mexico

Received 20 March 2014; Revised 13 May 2014; Accepted 13 May 2014; Published 9 June 2014

Academic Editor: Miguel A. González-Gay

Copyright © 2014 Eduardo Gómez-Bañuelos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. González-Juanatey, J. Llorca, and M. A. González-Gay, “Correlation between endothelial function and carotid atherosclerosis in rheumatoid arthritis patients with long-standing disease,” Arthritis Research & Therapy, vol. 13, no. 3, p. R101, 2011. View at Google Scholar · View at Scopus
  2. L. L. Schott, A. H. Kao, A. Cunningham et al., “Do carotid artery diameters manifest early evidence of atherosclerosis in women with rheumatoid arthritis?” Journal of Women's Health, vol. 18, no. 1, pp. 21–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Del Rincón, K. Williams, M. P. Stern, G. L. Freeman, D. H. O'Leary, and A. Escalantel, “Association between carotid atherosclerosis and markers of inflammation in rheumatoid arthritis patients and healthy subjects,” Arthritis and Rheumatism, vol. 48, no. 7, pp. 1833–1840, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Sokolove, M. J. Brennan, O. Sharpe et al., “Citrullination within the atherosclerotic plaque: a potential target for the anti-citrullinated protein antibody response in rheumatoid arthritis,” Arthritis and Rheumatism, vol. 65, no. 7, pp. 1719–1724, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Ayada, K. Yokota, K. Kobayashi, Y. Shoenfeld, E. Matsuura, and K. Oguma, “Chronic infections and atherosclerosis,” Clinical Reviews in Allergy & Immunology, vol. 37, no. 1, pp. 44–48, 2009. View at Google Scholar · View at Scopus
  6. K. J. Woollard, “Immunological aspects of atherosclerosis,” Clinical Science, vol. 125, no. 5, pp. 221–235, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. R. L. Silverstein, “Inflammation, atherosclerosis, and arterial thrombosis: role of the scavenger receptor CD36,” Cleveland Clinic Journal of Medicine, vol. 76, pp. S27–30, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Bartoloni, Y. Shoenfeld, and R. Gerli, “Inflammatory and autoimmune mechanisms in the induction of atherosclerotic damage in systemic rheumatic diseases: two faces of the same coin,” Arthritis Care and Research, vol. 63, no. 2, pp. 178–183, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. R. P. Choudhury, J. M. Lee, and D. R. Greaves, “Mechanisms of disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis,” Nature Clinical Practice Cardiovascular Medicine, vol. 2, no. 6, pp. 309–315, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. E. C. Moreira and M. A. Barcinski, “Apoptotic cell and phagocyte interplay: recognition and consequences in different cell systems,” Anais da Academia Brasileira de Ciencias, vol. 76, no. 1, pp. 93–115, 2004. View at Google Scholar · View at Scopus
  11. R. L. Silverstein, W. Li, Y. M. Park, and S. O. Rahaman, “Mechanisms of cell signaling by the scavenger receptor CD36: implications in atherosclerosis and thrombosis,” Transactions of the American Clinical and Climatological Association, vol. 121, pp. 206–220, 2010. View at Google Scholar · View at Scopus
  12. S. Nozaki, H. Kashiwagi, S. Yamashita et al., “Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36-deficient subjects,” Journal of Clinical Investigation, vol. 96, no. 4, pp. 1859–1865, 1995. View at Google Scholar · View at Scopus
  13. M. Janabi, S. Yamashita, K.-I. Hirano et al., “Oxidized LDL-induced NF-κB activation and subsequent expression of proinflammatory genes are defective in monocyte-derived macrophages from CD36-deficient patients,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 8, pp. 1953–1960, 2000. View at Google Scholar · View at Scopus
  14. M. P. Young, M. Febbraio, and R. L. Silverstein, “CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima,” Journal of Clinical Investigation, vol. 119, no. 1, pp. 136–145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. F. C. Arnett, S. M. Edworthy, D. A. Bloch et al., “The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis,” Arthritis and Rheumatism, vol. 31, no. 3, pp. 315–324, 1988. View at Google Scholar · View at Scopus
  16. P.-J. Touboul, M. G. Hennerici, S. Meairs et al., “Mannheim carotid intima-media thickness consensus (200–-2006): an update on behalf of the advisory board of the 3rd and 4th Watching the Risk Symposium 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006,” Cerebrovascular Diseases, vol. 23, no. 1, pp. 75–80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Hashizume and M. Mihara, “Blockade of IL-6 and TNF-α inhibited oxLDL-induced production of MCP-1 via scavenger receptor induction,” European Journal of Pharmacology, vol. 689, no. 1–3, pp. 249–254, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Z. Sha Ma, Q. Zhang, and Z. Y. Song, “TNFa alter cholesterol metabolism in human macrophages via PKC-θ-dependent pathway,” BMC Biochemistry, vol. 14, no. 1, article 20, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. J. F. Boyer, P. Balard, H. Authier et al., “Tumor necrosis factor alpha and adalimumab differentially regulate CD36 expression in human monocytes,” Arthritis Research and Therapy, vol. 9, no. 2, article R22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. W. S. Driscoll, T. Vaisar, J. Tang, C. L. Wilson, and E. W. Raines, “Macrophage ADAM17 deficiency augments CD36-dependent apoptotic cell uptake and the linked anti-inflammatory phenotype,” Circulation Research, vol. 113, no. 1, pp. 52–61, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. M. E. Rać, K. Safranow, M. Rać et al., “CD36 gene is associated with thickness of atheromatous plaque and ankle-brachial index in patients with early coronary artery disease,” Kardiologia Polska, vol. 70, no. 9, pp. 918–923, 2012. View at Google Scholar · View at Scopus
  22. S. L. Westlake, A. N. Colebatch, J. Baird et al., “The effect of methotrexate on cardiovascular disease in patients with rheumatoid arthritis: a systematic literature review,” Rheumatology, vol. 49, no. 2, pp. 295–307, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. B. Reiss, S. E. Carsons, K. Anwar et al., “Atheroprotective effects of methotrexate on reverse cholesterol transport proteins and foam cell transformation in human THP-1 monocyte/macrophages,” Arthritis and Rheumatism, vol. 58, no. 12, pp. 3675–3683, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. T. C. Bingham, E. A. Fisher, S. Parathath, A. B. Reiss, E. S. Chan, and B. N. Cronstein, “A2A adenosine receptor stimulation decreases foam cell formation by enhancing ABCA1-dependent cholesterol efflux,” Journal of Leukocyte Biology, vol. 87, no. 4, pp. 683–690, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Barrera, C. J. Haagsma, A. M. Boerbooms Th. et al., “Effect of methotrexate alone or in combination with sulphasalazine on the production and circulating concentrations of cytokines and their antagonists. Longitudinal evaluation in patients with rheumatoid arthritis,” British Journal of Rheumatology, vol. 34, no. 8, pp. 747–755, 1995. View at Google Scholar · View at Scopus
  26. D. H. Solomon, J. R. Curtis, K. G. Saag et al., “Cardiovascular risk in rheumatoid arthritis: comparing tnf-α blockade with nonbiologic DMARDs,” American Journal of Medicine, vol. 126, no. 8, pp. 730–e17, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Chen, K. Xun, L. Chen, and Y. Wang, “TNF-α, a potent lipid metabolism regulator,” Cell Biochemistry and Function, vol. 27, no. 7, pp. 407–416, 2009. View at Publisher · View at Google Scholar · View at Scopus