Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 740469, 12 pages
http://dx.doi.org/10.1155/2014/740469
Research Article

Microsoft Kinect-Based Artificial Perception System for Control of Functional Electrical Stimulation Assisted Grasping

1University of Belgrade-Faculty of Electrical Engineering, 11000 Belgrade, Serbia
2Tecnalia Serbia Ltd., 11000 Belgrade, Serbia
3Department of Translational Research and Knowledge Management, Otto Bock HealthCare GmbH, 37115 Duderstadt, Germany
4Serbian Academy of Sciences and Arts (SASA), 11000 Belgrade, Serbia

Received 28 February 2014; Revised 26 June 2014; Accepted 16 July 2014; Published 19 August 2014

Academic Editor: Mary Ellen Stoykov

Copyright © 2014 Matija Štrbac et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. B. Popovic, D. B. Popovic, T. Sinkjær, A. Stefanovic, and L. Schwirtlich, “Clinical evaluation of Functional Electrical Therapy in acute hemiplegic subjects,” Journal of Rehabilitation Research and Development, vol. 40, no. 5, pp. 443–453, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. M. B. Popovic, D. B. Popovic, T. Sinkjær, A. Stefanovic, and L. Schwirtlich, “Restitution of reaching and grasping promoted by functional electrical therapy,” Artificial Organs, vol. 26, no. 3, pp. 271–275, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. M. B. Popović, D. B. Popović, and R. Tomović, “Control of arm movement: reaching synergies for neuroprosthesis with life-like control,” Journal of Automatic Control, vol. 12, pp. 9–15, 2002. View at Google Scholar
  4. Y. Hara, S. Ogawa, K. Tsujiuchi, and Y. Muraoka, “A home-based rehabilitation program for the hemiplegic upper extremity by power-assisted functional electrical stimulation,” Disability and Rehabilitation, vol. 30, no. 4, pp. 296–304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. B. Popovic, M. B. Popovic, T. Sinkjær, A. Stefanovic, and L. Schwirtlich, “Therapy of paretic arm in hemiplegic subjects augmented with a neural prosthesis: a cross-over study,” Canadian Journal of Physiology and Pharmacology, vol. 82, no. 8-9, pp. 749–756, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. S. D. Iftime, L. L. Egsgaard, and M. B. Popović, “Automatic determination of synergies by radial basis function artificial neural networks for the control of a neural prosthesis,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 13, no. 4, pp. 482–489, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. B. Popović, “Control of neural prostheses for grasping and reaching,” Medical Engineering and Physics, vol. 25, no. 1, pp. 41–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. C. von Hofsten, “Predictive reaching for moving objects by human infants,” Journal of Experimental Child Psychology, vol. 30, no. 3, pp. 369–382, 1980. View at Publisher · View at Google Scholar · View at Scopus
  9. N. M. Malešević, L. Z. Popovic Maneski, V. Ilić et al., “A multi-pad electrode based functional electrical stimulation system for restoration of grasp,” Journal of Neuroengineering and Rehabilitation, vol. 9, article 66, 2012. View at Publisher · View at Google Scholar
  10. L. Popovic Maneski, M. Kostic, G. Bijelic et al., “Multi-pad electrode for effective grasping: design,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, pp. 648–654, 2013. View at Google Scholar
  11. N. M. Malešević, L. Z. Popović, L. Schwirtlich, and D. B. Popović, “Distributed low-frequency functional electrical stimulation delays muscle fatigue compared to conventional stimulation,” Muscle & Nerve, vol. 42, pp. 556–562, 2010. View at Google Scholar
  12. L. Z. Popovic Maneski, N. M. Malešević, A. M. Savić, T. Keller, and D. B. Popović, “Surface-distributed low-frequency asynchronous stimulation delays fatigue of stimulated muscles,” Muscle & Nerve, vol. 48, pp. 930–937, 2013. View at Google Scholar
  13. R. H. Nathan, “An FNS-based system for generating upper limb function in the C4 quadriplegic,” Medical and Biological Engineering and Computing, vol. 27, no. 6, pp. 549–556, 1989. View at Publisher · View at Google Scholar · View at Scopus
  14. R. H. Nathan and A. Ohry, “Upper limb functions regained in quadriplegia: a hybrid computerized neuromuscular stimulation system,” Archives of Physical Medicine and Rehabilitation, vol. 71, no. 6, pp. 415–421, 1990. View at Google Scholar · View at Scopus
  15. S. Saxena, S. Nikolic, and D. Popovic, “An EMG-controlled grasping system for tetraplegics,” Journal of Rehabilitation Research and Development, vol. 32, no. 1, pp. 17–24, 1995. View at Google Scholar · View at Scopus
  16. Y. Hao, M. Controzzi, C. Cipriani et al., “Controlling hand-assistive devices: utilizing electrooculography as a substitute for vision,” IEEE Robotics and Automation Magazine, vol. 20, no. 1, pp. 40–52, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Pfurtscheller, G. R. Müller-Putz, J. Pfurtscheller, and R. Rupp, “EEG-based asynchronous BCI controls functional electrical stimulation in a tetraplegic patient,” Eurasip Journal on Applied Signal Processing, vol. 2005, no. 19, pp. 3152–3155, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  18. A. M. Savić, N. M. Malešević, and M. B. Popović, “Feasibility of a hybrid brain-computer interface for advanced functional electrical therapy,” The Scientific World Journal, vol. 2014, Article ID 797128, 11 pages, 2014. View at Publisher · View at Google Scholar
  19. P. Peckham, “Motor prosthesis for restoration of upper extremity function,” in Neural Prostheses, pp. 162–187, 1992. View at Google Scholar
  20. R. B. Stein, P. H. Peckham, and D. Popović, Neural Prostheses: Replacing Motor Function after Disease or Disability, Oxford University Press, 1992.
  21. S. Došen, C. Cipriani, M. Kostić, M. Controzzi, M. C. Carrozza, and D. B. Popovič, “Cognitive vision system for control of dexterous prosthetic hands: experimental evaluation,” Journal of NeuroEngineering and Rehabilitation, vol. 7, no. 1, article 42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. Đ. Klisić, M. Kostić, S. Došen, and D. B. Popović, “Control of prehension for the transradial prosthesis: natural-like image recognition system,” Journal of Automatic Control, vol. 19, pp. 27–31, 2009. View at Publisher · View at Google Scholar
  23. S. Došen and D. B. Popović, “Transradial Prosthesis: Artificial Vision for Control of Prehension,” Artificial Organs, vol. 35, no. 1, pp. 37–48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. D. B. Popović and M. B. Popović, “Automatic determination of the optimal shape of a surface electrode: Selective stimulation,” Journal of Neuroscience Methods, vol. 178, pp. 174–181, 2009. View at Publisher · View at Google Scholar
  25. S. Dosen, G. K. Kristensen, B. Bakhshaie et al., “Computer vision for selection of electrical stimulation synergy to assist prehension and grasp,” in Proceedings of the Vienna International Workshop on Functional Electrical Stimulation, pp. 190–192, 2010.
  26. M. Štrbac and M. Marković, “Stereovision system for estimation of the grasp type for electrotherapy,” Serbian Journal of Electrical Engineering, vol. 8, no. 1, p. 17, 2011. View at Google Scholar
  27. Microsoft, Kinect for Windows, http://www.microsoft.com/en-us/kinectforwindows.
  28. L. Gallo, A. P. Placitelli, and M. Ciampi, “Controller-free exploration of medical image data: experiencing the Kinect,” in Proceedings of the 24th International Symposium on Computer-Based Medical Systems (CBMS '11), June 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Chang, S. Chen, and J. Huang, “A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities,” Research in Developmental Disabilities, vol. 32, no. 6, pp. 2566–2570, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Rydén, H. J. Chizeck, S. N. Kosari, H. King, and B. Hannaford, “Using kinect and a haptic interface for implementation of real-time virtual fixtures,” in Proceedings of the 2nd Workshop on RGB-D: Advanced Reasoning with Depth Cameras (in Conjunction with (RSS '11)), 2011.
  31. M. D. Štrbac, N. M. Malešević, R. Čobeljić, and L. Schwirtlich, “Feedback control of the forearm movement of tetraplegic patient based on microsoft kinect and multi-pad electrodes,” Journal of Automatic Control, vol. 21, pp. 7–11, 2013. View at Google Scholar
  32. T. Exell, C. Freeman, K. Meadmore et al., “Goal orientated stroke rehabilitation utilising electrical stimulation, iterative learning and microsoft kinect,” in Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR '13), pp. 1–6, 2013.
  33. E. Hallewell, T. Exell, K. Meadmore, C. Freeman, M. Kutlu, and A.-M. Hughes, “Goal-orientated Functional Rehabilitation using Electrical Stimulation and Iterative Learning Control for Motor Recovery in the Upper Extremity Post-Stroke,” 2013.
  34. M. A. Livingston, J. Sebastian, Z. Ai, and J. W. Decker, “Performance measurements for the Microsoft Kinect skeleton,” in Proceedings of the Virtual Reality Short Papers and Posters (VRW '12), pp. 119–120, IEEE.
  35. K. Khoshelham and S. O. Elberink, “Accuracy and resolution of kinect depth data for indoor mapping applications,” Sensors, vol. 12, no. 2, pp. 1437–1454, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Webb and J. Ashley, Beginning Kinect Programming with the Microsoft Kinect SDK, Apress, 2012.
  37. J. Fung and S. Mann, “Using graphics devices in reverse: GPU-based Image Processing and Computer Vision,” in Proceedings of the IEEE International Conference on Multimedia and Expo (ICME '08), pp. 9–12, deu, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Smisek, M. Jancosek, and T. Pajdla, “3D with kinect,” in Consumer Depth Cameras for Computer Vision, pp. 3–25, Springer, 2013. View at Google Scholar
  39. M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the Association for Computing Machinery, vol. 24, no. 6, pp. 381–395, 1981. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  40. M. Strbac, M. Markovic, and D. B. Popovic, “Kinect in neurorehabilitation: computer vision system for real time hand and object detection and distance estimation,” in Proceedings of the 11th Symposium on Neural Network Applications in Electrical Engineering (NEUREL '12), pp. 127–132, 2012.
  41. B. K. Horn and B. G. Schunck, “Determining optical flow,” in Proceedings of the Technical Symposium East, pp. 319–331, 1981.
  42. D. Comaniciu and P. Meer, “Robust analysis of feature spaces: color image segmentation,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 750–755, San Juan, Puerto Rico, USA, June 1997. View at Scopus
  43. C. Daniel Herrera, J. Kannala, and J. Heikkilä, “Joint depth and color camera calibration with distortion correction,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 10, pp. 2058–2064, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. X. Luo, T. Kline, H. C. Fischer, K. A. Stubblefield, R. V. Kenyon, and D. G. Kamper, “Integration of augmented reality and assistive devices for post-stroke hand opening rehabilitation,” in Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE-EMBS '05), pp. 6855–6858, September 2005. View at Scopus
  45. M. Štrbac, M. Okošanović, J. Kljajić, and M. Popović, “Computer vision system for assessment of hand manipulation,” in Proceedings of the 10th Mediterranean Congress of PRM, Budva, Montenegro, 2013.
  46. A. Mihailidis, B. Carmichael, and J. Boger, “The use of computer vision in an intelligent environment to support aging-in-place, safety, and independence in the home,” IEEE Transactions on Information Technology in Biomedicine, vol. 8, no. 3, pp. 238–247, 2004. View at Publisher · View at Google Scholar · View at Scopus