Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 749724, 10 pages
http://dx.doi.org/10.1155/2014/749724
Review Article

Genetic Networks Lead and Follow Tumor Development: MicroRNA Regulation of Cell Cycle and Apoptosis in the p53 Pathways

1Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
2Division of Research and Development, Kewpie Corporation, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan

Received 25 July 2014; Accepted 26 August 2014; Published 11 September 2014

Academic Editor: Chengfeng Yang

Copyright © 2014 Kurataka Otsuka and Takahiro Ochiya. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. A. Calin and C. M. Croce, “MicroRNA signatures in human cancers,” Nature Reviews Cancer, vol. 6, no. 11, pp. 857–866, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. K. H. Vousden and D. P. Lane, “p53 in health and disease,” Nature Reviews Molecular Cell Biology, vol. 8, no. 4, pp. 275–283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Pelengaris, M. Khan, and G. Evan, “c-MYC: more than just a matter of life and death,” Nature Reviews Cancer, vol. 2, no. 10, pp. 764–776, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Vogelstein and K. W. Kinzler, “Cancer genes and the pathways they control,” Nature Medicine, vol. 10, no. 8, pp. 789–799, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Olivier, S. P. Hussain, C. C. de Fromentel, P. Hainaut, and C. C. Harris, “TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer,” IARC Scientific Publications, vol. 157, no. 6, pp. 247–270, 2004. View at Google Scholar · View at Scopus
  6. A. J. Levine, W. Hu, and Z. Feng, “The P53 pathway: what questions remain to be explored?” Cell Death and Differentiation, vol. 13, no. 6, pp. 1027–1036, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. W. S. El-Deiry, T. Tokino, V. E. Velculescu et al., “WAF1, a potential mediator of p53 tumor suppression,” Cell, vol. 75, no. 4, pp. 817–825, 1993. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Yu, L. Zhang, P. M. Hwang, K. W. Kinzler, and B. Vogelstein, “PUMA induces the rapid apoptosis of colorectal cancer cells,” Molecular Cell, vol. 7, no. 3, pp. 673–682, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Hermeking, C. Lengauer, K. Polyak et al., “14-3-3σ is a p53-regulated inhibitor of G2/M progression,” Molecular Cell, vol. 1, no. 1, pp. 3–11, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. K. H. Vousden and C. Prives, “Blinded by the light: the growing complexity of p53,” Cell, vol. 137, no. 3, pp. 413–431, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. B. Spurgers, D. L. Gold, K. R. Coombes et al., “Identification of cell cycle regulatory genes as principal targets of p53-mediated transcriptional repression,” The Journal of Biological Chemistry, vol. 281, no. 35, pp. 25134–25141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Lujambio and S. W. Lowe, “The microcosmos of cancer,” Nature, vol. 482, no. 7385, pp. 347–355, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Raver-Shapira, E. Marciano, E. Meiri et al., “Transcriptional activation of miR-34a contributes to p53-mediated apoptosis,” Molecular Cell, vol. 26, no. 5, pp. 731–743, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. T.-C. Chang, E. A. Wentzel, O. A. Kent et al., “Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis,” Molecular Cell, vol. 26, no. 5, pp. 745–752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. L. He, X. He, L. P. Lim et al., “A microRNA component of the p53 tumour suppressor network,” Nature, vol. 447, no. 7148, pp. 1130–1134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Tarasov, P. Jung, B. Verdoodt et al., “Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest,” Cell Cycle, vol. 6, no. 13, pp. 1586–1593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. G. T. Bommer, I. Gerin, Y. Feng et al., “p53-mediated activation of miRNA34 candidate tumor-suppressor genes,” Current Biology, vol. 17, no. 15, pp. 1298–1307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. R. C. Lee, R. L. Feinbaum, and V. Ambros, “The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14,” Cell, vol. 75, no. 5, pp. 843–854, 1993. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Wightman, I. Ha, and G. Ruvkun, “Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans,” Cell, vol. 75, no. 5, pp. 855–862, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. B. J. Reinhart, F. J. Slack, M. Basson et al., “The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans,” Nature, vol. 403, no. 6772, pp. 901–906, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Krek, D. Grün, M. N. Poy et al., “Combinatorial microRNA target predictions,” Nature Genetics, vol. 37, no. 5, pp. 495–500, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Lee, M. Kim, J. J. Han et al., “MicroRNA genes are transcribed by RNA polymerase II,” The EMBO Journal, vol. 23, no. 20, pp. 4051–4060, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. G. M. Borchert, W. Lanier, and B. L. Davidson, “RNA polymerase III transcribes human microRNAs,” Nature Structural and Molecular Biology, vol. 13, no. 12, pp. 1097–1101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. V. N. Kim, “MicroRNA biogenesis: coordinated cropping and dicing,” Nature Reviews Molecular Cell Biology, vol. 6, no. 5, pp. 376–385, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Lee, K. Jeon, J.-T. Lee, S. Kim, and V. N. Kim, “MicroRNA maturation: stepwise processing and subcellular localization,” The EMBO Journal, vol. 21, no. 17, pp. 4663–4670, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Lund, S. Güttinger, A. Calado, J. E. Dahlberg, and U. Kutay, “Nuclear export of microRNA precursors,” Science, vol. 303, no. 5654, pp. 95–98, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. V. N. Kim, “Small RNAs: classification, biogenesis, and function,” Molecules and Cells, vol. 19, no. 1, pp. 1–15, 2005. View at Google Scholar · View at Scopus
  31. L. P. Lim, N. C. Lau, P. Garrett-Engele et al., “Microarray analysis shows that some microRNAs downregulate large numbers of-target mRNAs,” Nature, vol. 433, no. 7027, pp. 769–773, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Bagga, J. Bracht, S. Hunter et al., “Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation,” Cell, vol. 122, no. 4, pp. 553–563, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. E. C. Lai, “Predicting and validating microRNA targets,” Genome Biology, vol. 5, no. 9, article 115, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Wu and J. G. Belasco, “Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs,” Molecular Cell, vol. 29, no. 1, pp. 1–7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Eulalio, E. Huntzinger, and E. Izaurralde, “Getting to the root of miRNA-mediated gene silencing,” Cell, vol. 132, no. 1, pp. 9–14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. R. W. Carthew and E. J. Sontheimer, “Origins and mechanisms of miRNAs and siRNAs,” Cell, vol. 136, no. 4, pp. 642–655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. L. A. Yates, C. J. Norbury, and R. J. C. Gilbert, “The long and short of microRNA,” Cell, vol. 153, no. 3, pp. 516–519, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Haupt, R. Maya, A. Kazaz, and M. Oren, “Mdm2 promotes the rapid degradation of p53,” Nature, vol. 387, no. 6630, pp. 296–299, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. M. H. G. Kubbutat, S. N. Jones, and K. H. Vousden, “Regulation of p53 stability by Mdm2,” Nature, vol. 387, no. 6630, pp. 299–303, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. C. L. Brooks and W. Gu, “p53 ubiquitination: mdm2 and beyond,” Molecular Cell, vol. 21, no. 3, pp. 307–315, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Roger, G. Gadea, and P. Roux, “Control of cell migration: a tumour suppressor function for p53?” Biology of the Cell, vol. 98, no. 3, pp. 141–152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. J. G. Teodoro, A. E. Parker, X. Zhu, and M. R. Green, “p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase,” Science, vol. 313, no. 5789, pp. 968–971, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. M. R. Junttila and G. I. Evan, “P53—a Jack of all trades but master of none,” Nature Reviews Cancer, vol. 9, no. 11, pp. 821–829, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. S. A. Gatz and L. Wiesmüller, “p53 in recombination and repair,” Cell Death and Differentiation, vol. 13, no. 6, pp. 1003–1016, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Bensaad and K. H. Vousden, “Savior and slayer: the two faces of p53,” Nature Medicine, vol. 11, no. 12, pp. 1278–1279, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Bensaad, A. Tsuruta, M. A. Selak et al., “TIGAR, a p53-inducible regulator of glycolysis and apoptosis,” Cell, vol. 126, no. 1, pp. 107–120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Matoba, J.-G. Kang, W. D. Patino et al., “p53 regulates mitochondrial respiration,” Science, vol. 312, no. 5780, pp. 1650–1653, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Murray-Zmijewski, D. P. Lane, and J.-C. Bourdon, “p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress,” Cell Death and Differentiation, vol. 13, no. 6, pp. 962–972, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Cawley, S. Bekiranov, H. H. Ng et al., “Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs,” Cell, vol. 116, no. 4, pp. 499–509, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. C.-L. Wei, Q. Wu, V. B. Vega et al., “A global map of p53 transcription-factor binding sites in the human genome,” Cell, vol. 124, no. 1, pp. 207–219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Tazawa, N. Tsuchiya, M. Izumiya, and H. Nakagama, “Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 39, pp. 15472–15477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. D. C. Corney, A. Flesken-Nikitin, A. K. Godwin, W. Wang, and A. Y. Nikitin, “MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth,” Cancer Research, vol. 67, no. 18, pp. 8433–8438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Hermeking, “MicroRNAs in the p53 network: micromanagement of tumour suppression,” Nature Reviews Cancer, vol. 12, no. 9, pp. 613–626, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Hermeking, “The miR-34 family in cancer and apoptosis,” Cell Death & Differentiation, vol. 17, no. 2, pp. 193–199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Yamakuchi, C. D. Lotterman, C. Bao et al., “P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 14, pp. 6334–6339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Böhlig, M. Friedrich, and K. Engeland, “P53 activates the PANK1/miRNA-107 gene leading to downregulation of CDK6 and p130 cell cycle proteins,” Nucleic Acids Research, vol. 39, no. 2, pp. 440–453, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. G. Martello, A. Rosato, F. Ferrari et al., “A microRNA targeting dicer for metastasis control,” Cell, vol. 141, no. 7, pp. 1195–1207, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Z. Michael, S. M. O'Connor, N. G. van Holst Pellekaan, G. P. Young, and R. J. James, “Reduced accumulation of specific microRNAs in colorectal neoplasia,” Molecular Cancer Research, vol. 1, no. 12, pp. 882–891, 2003. View at Google Scholar · View at Scopus
  59. M. V. Iorio, M. Ferracin, C.-G. Liu et al., “MicroRNA gene expression deregulation in human breast cancer,” Cancer Research, vol. 65, no. 16, pp. 7065–7070, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. S. O. Suh, Y. Chen, M. S. Zaman et al., “MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer,” Carcinogenesis, vol. 32, no. 5, pp. 772–778, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. G. A. Calin, C. Sevignani, C. D. Dumitru et al., “Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2999–3004, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Sachdeva, S. M. Zhu, F. T. Wu et al., “p53 represses c-Myc through induction of the tumor suppressor miR-145,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3207–3212, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Zhu, U. Dougherty, V. Robinson et al., “EGFR signals downregulate tumor suppressors miR-143 and miR-145 in Western diet-promoted murine colon cancer: role of G1 regulators,” Molecular Cancer Research, vol. 9, no. 7, pp. 960–975, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Lujambio and M. Esteller, “CpG island hypermethylation of tumor suppressor microRNAs in human cancer,” Cell Cycle, vol. 6, no. 12, pp. 1455–1459, 2007. View at Google Scholar · View at Scopus
  65. H. W. Khella, M. Bakhet, G. Allo et al., “miR-192, miR-194 and miR-215: a convergent microRNA network suppressing tumor progression in renal cell carcinoma,” Carcinogenesis, vol. 34, no. 10, pp. 2231–2239, 2013. View at Google Scholar
  66. C. J. Braun, X. Zhang, I. Savelyeva et al., “p53-responsive microRNAs 192 and 215 are capable of inducing cell cycle arrest,” Cancer Research, vol. 68, no. 24, pp. 10094–10104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Feng, S. Cong, X. Zhang et al., “MicroRNA-192 targeting retinoblastoma 1 inhibits cell proliferation and induces cell apoptosis in lung cancer cells,” Nucleic Acids Research, vol. 39, no. 15, pp. 6669–6678, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. F. Pichiorri, S.-S. Suh, A. Rocci et al., “Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development,” Cancer Cell, vol. 18, no. 4, pp. 367–381, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. U. Senanayake, S. Das, P. Vesely et al., “miR-192, miR-194, miR-215, miR-200c and miR-141 are downregulated and their common target ACVR2B is strongly expressed in renal childhood neoplasms,” Carcinogenesis, vol. 33, no. 5, pp. 1014–1021, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. S. A. Georges, M. C. Biery, S.-Y. Kim et al., “Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215,” Cancer Research, vol. 68, no. 24, pp. 10105–10112, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. K. Polyak and R. A. Weinberg, “Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits,” Nature Reviews Cancer, vol. 9, no. 4, pp. 265–273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Valastyan and R. A. Weinberg, “Tumor metastasis: molecular insights and evolving paradigms,” Cell, vol. 147, no. 2, pp. 275–292, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. C. Chang, C. H. Chao, W. Xia et al., “P53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs,” Nature Cell Biology, vol. 13, no. 3, pp. 317–323, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Kim, A. Veronese, F. Pichiorri et al., “p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2,” Journal of Experimental Medicine, vol. 208, no. 5, pp. 875–883, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. U. Burk, J. Schubert, U. Wellner et al., “A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells,” EMBO Reports, vol. 9, no. 6, pp. 582–589, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. P. A. Gregory, A. G. Bert, E. L. Paterson et al., “The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1,” Nature Cell Biology, vol. 10, no. 5, pp. 593–601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Korpal, E. S. Lee, G. Hu, and Y. Kang, “The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2,” The Journal of Biological Chemistry, vol. 283, no. 22, pp. 14910–14914, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. S.-M. Park, A. B. Gaur, E. Lengyel, and M. E. Peter, “The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2,” Genes & Development, vol. 22, no. 7, pp. 894–907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. Shimono, M. Zabala, R. W. Cho et al., “Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells,” Cell, vol. 138, no. 3, pp. 592–603, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. U. Wellner, J. Schubert, U. C. Burk et al., “The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs,” Nature Cell Biology, vol. 11, no. 12, pp. 1487–1495, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. R. Schickel, S.-M. Park, A. E. Murmann, and M. E. Peter, “miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1,” Molecular Cell, vol. 38, no. 6, pp. 908–915, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. A. E. Pasquinelli, B. J. Reinhart, F. Slack et al., “Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA,” Nature, vol. 408, no. 6808, pp. 86–89, 2000. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Takamizawa, H. Konishi, K. Yanagisawa et al., “Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival,” Cancer Research, vol. 64, no. 11, pp. 3753–3756, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. N. Yanaihara, N. Caplen, E. Bowman et al., “Unique microRNA molecular profiles in lung cancer diagnosis and prognosis,” Cancer Cell, vol. 9, no. 3, pp. 189–198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. A. D. Saleh, J. E. Savage, L. Cao et al., “Cellular stress induced alterations in microrna let-7a and let-7b expression are dependent on p53,” PLoS ONE, vol. 6, no. 10, Article ID e24429, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. C. D. Johnson, A. Esquela-Kerscher, G. Stefani et al., “The let-7 microRNA represses cell proliferation pathways in human cells,” Cancer Research, vol. 67, no. 16, pp. 7713–7722, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Legesse-Miller, O. Elemento, S. J. Pfau, J. J. Forman, S. Tavazoie, and H. A. Coller, “Let-7 overexpression leads to an increased fraction of cells in G2/M, direct down-regulation of Cdc34, and stabilization of wee1 kinase in primary fibroblasts,” The Journal of Biological Chemistry, vol. 284, no. 11, pp. 6605–6609, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. V. B. Sampson, N. H. Rong, J. Han et al., “MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells,” Cancer Research, vol. 67, no. 20, pp. 9762–9770, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. M. J. Bueno, M. Gómez de Cedrón, G. Gómez-López et al., “Combinatorial effects of microRNAs to suppress the Myc oncogenic pathway,” Blood, vol. 117, no. 23, pp. 6255–6266, 2011. View at Google Scholar
  90. M. J. Bueno, M. G. de Cedrón, U. Laresgoiti, J. Fernández-Piqueras, A. M. Zubiaga, and M. Malumbres, “Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling,” Molecular and Cellular Biology, vol. 30, no. 12, pp. 2983–2995, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Ota, H. Tagawa, S. Karnan et al., “Identification and characterization of a novel gene, C13orf25 , as a target for 13q31-q32 amplification in malignant lymphoma,” Cancer Research, vol. 64, no. 9, pp. 3087–3095, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. L. He, J. M. Thomson, M. T. Hemann et al., “A microRNA polycistron as a potential human oncogene,” Nature, vol. 435, no. 7043, pp. 828–833, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. H.-L. Yan, G. Xue, Q. Mei et al., “Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis,” EMBO Journal, vol. 28, no. 18, pp. 2719–2732, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. K. A. O'Donnell, E. A. Wentzel, K. I. Zeller, C. V. Dang, and J. T. Mendell, “c-Myc-regulated microRNAs modulate E2F1 expression,” Nature, vol. 435, no. 7043, pp. 839–843, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. J. S. L. Ho, W. Ma, D. Y. L. Mao, and S. Benchimol, “p53-dependent transcriptional repression of c-myc is required for G1 cell cycle arrest,” Molecular and Cellular Biology, vol. 25, no. 17, pp. 7423–7431, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. A. Hossain, M. T. Kuo, and G. F. Saunders, “Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA,” Molecular and Cellular Biology, vol. 26, no. 21, pp. 8191–8201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. H. Li and B. B. Yang, “Stress response of glioblastoma cells mediated by miR-17-5p targeting PTEN and the passenger strand miR-17-3p targeting MDM2,” Oncotarget, vol. 3, no. 12, pp. 1653–1668, 2012. View at Google Scholar · View at Scopus
  98. G. A. Calin, C. D. Dumitru, M. Shimizu et al., “Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15524–15529, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Bottoni, D. Piccin, F. Tagliati, A. Luchin, M. C. Zatelli, and E. C. D. Uberti, “miR-15a and miR-16-1 down-regulation in pituitary adenomas,” Journal of Cellular Physiology, vol. 204, no. 1, pp. 280–285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. L. Xia, D. Zhang, R. Du et al., “miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells,” International Journal of Cancer, vol. 123, no. 2, pp. 372–379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. D. Bonci, V. Coppola, M. Musumeci et al., “The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities,” Nature Medicine, vol. 14, no. 11, pp. 1271–1277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. F. Takeshita, L. Patrawala, M. Osaki et al., “Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes,” Molecular Therapy, vol. 18, no. 1, pp. 181–187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Musumeci, V. Coppola, A. Addario et al., “Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer,” Oncogene, vol. 30, no. 41, pp. 4231–4242, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. K. P. Porkka, E.-L. Ogg, O. R. Saramäki et al., “The miR-15a-miR-16-1 locus is homozygously deleted in a subset of prostate cancers,” Genes, Chromosomes and Cancer, vol. 50, no. 7, pp. 499–509, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. N. Bandi, S. Zbinden, M. Gugger et al., “miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer,” Cancer Research, vol. 69, no. 13, pp. 5553–5559, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. N. Bandi and E. Vassella, “MiR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner,” Molecular Cancer, vol. 10, article 55, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. R. Bhattacharya, M. Nicoloso, R. Arvizo et al., “MiR-15a and MiR-16 control Bmi-1 expression in ovarian cancer,” Cancer Research, vol. 69, no. 23, pp. 9090–9095, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. X. J. Zhang, H. Ye, C. W. Zeng, B. He, H. Zhang, and Y. Q. Chen, “Dysregulation of miR-15a and miR-214 in human pancreatic cancer,” Journal of Hematology & Oncology, vol. 3, article 46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Fabbri, A. Bottoni, M. Shimizu et al., “Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia,” The Journal of the American Medical Association, vol. 305, no. 1, pp. 59–67, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. H. I. Suzuki, K. Yamagata, K. Sugimoto, T. Iwamoto, S. Kato, and K. Miyazono, “Modulation of microRNA processing by p53,” Nature, vol. 460, no. 7254, pp. 529–533, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. P. S. Linsley, J. Schelter, J. Burchard et al., “Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression,” Molecular and Cellular Biology, vol. 27, no. 6, pp. 2240–2252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. Q. Liu, H. Fu, F. Sun et al., “miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes,” Nucleic Acids Research, vol. 36, no. 16, pp. 5391–5404, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. E. Macias, A. Jin, C. Deisenroth et al., “An ARF-Independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 interaction,” Cancer Cell, vol. 18, no. 3, pp. 231–243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. J. Zhang, Q. Sun, Z. Zhang, S. Ge, Z.-G. Han, and W.-T. Chen, “Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop,” Oncogene, vol. 32, no. 1, pp. 61–69, 2013. View at Publisher · View at Google Scholar · View at Scopus
  115. J. Xiao, H. Lin, X. Luo, and Z. Wang, “miR605 joins p53 network to form a p53:miR605:Mdm2 positive feedback loop in response to stress,” EMBO Journal, vol. 30, no. 3, pp. 524–532, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. S.-Y. Park, J. H. Lee, M. Ha, J.-W. Nam, and V. N. Kim, “miR-29 miRNAs activate p53 by targeting p85α and CDC42,” Nature Structural and Molecular Biology, vol. 16, no. 1, pp. 23–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. A. P. Ugalde, A. J. Ramsay, J. de la Rosa et al., “Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53,” EMBO Journal, vol. 30, no. 11, pp. 2219–2232, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. K. Okamoto, H. Li, M. R. Jensen et al., “Cyclin G recruits PP2A to dephosphorylate Mdm2,” Molecular Cell, vol. 9, no. 4, pp. 761–771, 2002. View at Publisher · View at Google Scholar · View at Scopus
  119. F. Fornari, L. Gramantieri, C. Giovannini et al., “MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells,” Cancer Research, vol. 69, no. 14, pp. 5761–5767, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. S.-S. Suh, J. Y. Yoo, G. J. Nuovo et al., “MicroRNAs/TP53 feedback circuitry in glioblastoma multiforme,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 14, pp. 5316–5321, 2012. View at Publisher · View at Google Scholar · View at Scopus
  121. A. A. Dar, S. Majid, C. Rittsteuer et al., “The role of miR-18b in MDM2-p53 pathway signaling and melanoma progression,” Journal of the National Cancer Institute, vol. 105, no. 6, pp. 433–442, 2013. View at Publisher · View at Google Scholar · View at Scopus
  122. J. Luo, A. Y. Nikolaev, S.-I. Imai et al., “Negative control of p53 by Sir2α promotes cell survival under stress,” Cell, vol. 107, no. 2, pp. 137–148, 2001. View at Publisher · View at Google Scholar · View at Scopus
  123. H. Vaziri, S. K. Dessain, E. N. Eaton et al., “hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase,” Cell, vol. 107, no. 2, pp. 149–159, 2001. View at Publisher · View at Google Scholar · View at Scopus
  124. M. Yamakuchi, M. Ferlito, and C. J. Lowenstein, “miR-34a repression of SIRT1 regulates apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 36, pp. 13421–13426, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. M. Lizé, S. Pilarski, and M. Dobbelstein, “E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis,” Cell Death & Differentiation, vol. 17, no. 3, pp. 452–458, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. T. Bou Kheir, E. Futoma-Kazmierczak, A. Jacobsen et al., “miR-449 inhibits cell proliferation and is down-regulated in gastric cancer,” Molecular Cancer, vol. 10, article 29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Lizé, A. Klimke, and M. Dobbelstein, “MicroRNA-449 in cell fate determination,” Cell Cycle, vol. 10, no. 17, pp. 2874–2882, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. M. T. N. Le, C. Teh., N. Shyh-Chang et al., “MicroRNA-125b is a novel negative regulator of p53,” Genes and Development, vol. 23, no. 7, pp. 862–876, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. Y. Zhang, J.-S. Gao, X. Tang et al., “MicroRNA 125a and its regulation of the p53 tumor suppressor gene,” FEBS Letters, vol. 583, no. 22, pp. 3725–3730, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. N. Nishida, T. Yokobori, K. Mimori et al., “MicroRNA miR-125b is a prognostic marker in human colorectal cancer,” International Journal of Oncology, vol. 38, no. 5, pp. 1437–1443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. M. T. N. Le, N. Shyh-Chang, S. L. Khaw et al., “Conserved regulation of p53 network dosage by microRNA-125b occurs through evolving miRNA-target gene pairs,” PLoS Genetics, vol. 7, no. 9, Article ID e1002242, 2011. View at Publisher · View at Google Scholar · View at Scopus
  132. W. Hu, C. S. Chan, R. Wu et al., “Negative regulation of tumor suppressor p53 by microRNA miR-504,” Molecular Cell, vol. 38, no. 5, pp. 689–699, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. A. Swarbrick, S. L. Woods, A. Shaw et al., “MiR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma,” Nature Medicine, vol. 16, no. 10, pp. 1134–1140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. A. Herrera-Merchan, C. Cerrato, G. Luengo et al., “miR-33-mediated downregulation of p53 controls hematopoietic stem cell self-renewal,” Cell Cycle, vol. 9, no. 16, pp. 3277–3285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  135. S. Tian, S. Huang, S. Wu, W. Guo, J. Li, and X. He, “MicroRNA-1285 inhibits the expression of p53 by directly targeting its 3′ untranslated region,” Biochemical and Biophysical Research Communications, vol. 396, no. 2, pp. 435–439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  136. J. Li, S. Donath, Y. Li, D. Qin, B. S. Prabhakar, and P. Li, “miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway,” PLoS Genetics, vol. 6, no. 1, Article ID e1000795, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. M. Kumar, Z. Lu, A. A. L. Takwi et al., “Negative regulation of the tumor suppressor p53 gene by microRNAs,” Oncogene, vol. 30, no. 7, pp. 843–853, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. N. Li, S. Kaur, J. Greshock et al., “A combined array-based comparative genomic hybridization and functional library screening approach identifies mir-30d as an oncomir in cancer,” Cancer Research, vol. 72, no. 1, pp. 154–164, 2012. View at Publisher · View at Google Scholar · View at Scopus
  139. L. Salmena, L. Poliseno, Y. Tay, L. Kats, and P. P. Pandolfi, “A ceRNA hypothesis: the rosetta stone of a hidden RNA language?” Cell, vol. 146, no. 3, pp. 353–358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. R. Schickel, B. Boyerinas, S.-M. Park, and M. E. Peter, “MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death,” Oncogene, vol. 27, no. 45, pp. 5959–5974, 2008. View at Publisher · View at Google Scholar · View at Scopus
  141. N. Tsuchiya, M. Izumiya, H. Ogata-Kawata et al., “Tumor suppressor miR-22 determines p53-dependent cellular fate through post-transcriptional regulation of p21,” Cancer Research, vol. 71, no. 13, pp. 4628–4639, 2011. View at Publisher · View at Google Scholar · View at Scopus
  142. M. J. Bueno and M. Malumbres, “MicroRNAs and the cell cycle,” Biochimica et Biophysica Acta, vol. 1812, no. 5, pp. 592–601, 2011. View at Publisher · View at Google Scholar · View at Scopus