Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 751930, 8 pages
http://dx.doi.org/10.1155/2014/751930
Research Article

Liraglutide Suppresses Obesity and Hyperglycemia Associated with Increases in Hepatic Fibroblast Growth Factor 21 Production in KKAy Mice

Department of Lifestyle Medicine, Translational Research Center, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan

Received 12 February 2014; Accepted 5 March 2014; Published 7 April 2014

Academic Editor: Ruxana Sadikot

Copyright © 2014 Katsunori Nonogaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Nonogaki, K. Nozue, and Y. Oka, “Social isolation affects the development of obesity and type 2 diabetes in mice,” Endocrinology, vol. 148, no. 10, pp. 4658–4666, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. J. Holst, “The physiology of glucagon-like peptide 1,” Physiological Reviews, vol. 87, no. 4, pp. 1409–1439, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. D. J. Drucker, A. Dritselis, and P. Kirkpatrick, “Liraglutide,” Nature Reviews Drug Discovery, vol. 9, no. 4, pp. 267–268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. Lovshin and D. J. Drucker, “Incretin-based therapies for type 2 diabetes mellitus,” Nature Reviews Endocrinology, vol. 5, no. 5, pp. 262–269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Feng, Z. Zhang, M. B. Wallace et al., “Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV,” Journal of Medicinal Chemistry, vol. 50, no. 10, pp. 2297–2300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Lee, L. Shi, D. B. Kassel, T. Asakawa, K. Takeuchi, and R. J. Christopher, “Pharmacokinetic, pharmacodynamic, and efficacy profiles of alogliptin, a novel inhibitor of dipeptidyl peptidase-4, in rats, dogs, and monkeys,” European Journal of Pharmacology, vol. 589, no. 1–3, pp. 306–314, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Moritoh, K. Takeuchi, T. Asakawa, O. Kataoka, and H. Odaka, “The dipeptidyl peptidase-4 inhibitor alogliptin in combination with pioglitazone improves glycemic control, lipid profiles, and increases pancreatic insulin content in ob/ob mice,” European Journal of Pharmacology, vol. 602, no. 2-3, pp. 448–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Moritoh, K. Takeuchi, T. Asakawa, O. Kataoka, and H. Odaka, “Combining a dipeptidyl peptidase-4 inhibitor, alogliptin, with pioglitazone improves glycaemic control, lipid profiles and β-cell function in db/db mice,” British Journal of Pharmacology, vol. 157, no. 3, pp. 415–426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Nonogaki, M. Suzuki, M. Sanuki, M. Wakameda, and T. Tamari, “The contribution of serotonin 5-HT2C and melanocortin-4 receptors to the satiety signaling of glucagon-like peptide 1 and liragultide, a glucagon-like peptide 1 receptor agonist, in mice,” Biochemical and Biophysical Research Communications, vol. 411, no. 2, pp. 445–448, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Nagamatsu, M. Ohara-Imaizumi, Y. Nakamichi, K. Aoyagi, and C. Nishiwaki, “DPP-4 inhibitor des-F-sitagliptin treatment increased insulin exocytosis from db/db mice β cells,” Biochemical and Biophysical Research Communications, vol. 412, no. 4, pp. 556–560, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Nonogaki and M. Suzuki, “Liraglutide suppresses the plasma levels of active and des-acyl ghrelin independently of active glucagon-like peptide-1 levels in mice,” ISRN Endocrinology, vol. 2013, Article ID 184753, 5 pages, 2013. View at Publisher · View at Google Scholar
  12. A. Kharitonenkov, T. L. Shiyanova, A. Koester et al., “FGF-21 as a novel metabolic regulator,” The Journal of Clinical Investigation, vol. 115, no. 6, pp. 1627–1635, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. E. D. Berglund, C. Y. Li, H. A. Bina et al., “Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity,” Endocrinology, vol. 150, no. 9, pp. 4084–4093, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Coskun, H. A. Bina, M. A. Schneider et al., “Fibroblast growth factor 21 corrects obesity in mice,” Endocrinology, vol. 149, no. 12, pp. 6018–6027, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Xu, D. J. Lloyd, C. Hale et al., “Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice,” Diabetes, vol. 58, no. 1, pp. 250–259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Yang, L. Zhang, C. Wang et al., “Liraglutide increases FGF-21 activity and insulin sensitivity in high fat diet and adiponectin knockdown induced insulin resistance,” PLoS ONE, vol. 7, no. 11, Article ID e48392, 2012. View at Publisher · View at Google Scholar
  17. T. Inagaki, V. Y. Lin, R. Goetz, M. Mohammadi, D. J. Mangelsdorf, and S. A. Kliewer, “Inhibition of growth hormone signaling by the fasting-induced hormone FGF21,” Cell Metabolism, vol. 8, no. 1, pp. 77–83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. K. Badman, A. Koester, J. S. Flier, A. Kharitonenkov, and E. Maratos-Flier, “Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis,” Endocrinology, vol. 150, no. 11, pp. 4931–4940, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. E. S. Muise, B. Azzolina, D. W. Kuo et al., “Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor γ and altered metabolic states,” Molecular Pharmacology, vol. 74, no. 2, pp. 403–412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. P. A. Dutchak, T. Katafuchi, A. L. Bookout et al., “Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones,” Cell, vol. 148, no. 3, pp. 556–567, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. K. M. Habegger, K. Stemmer, C. Cheng et al., “Fibroblast growth factor 21 mediates specific glucagon actions,” Diabetes, vol. 62, no. 5, pp. 1453–1463, 2013. View at Publisher · View at Google Scholar
  22. A. M. Arafat, P. Kaczmarek, M. Skrzypski et al., “Glucagon increases circulating fibroblast growth factor 21 independently of endogenous insulin levels: a novel mechanism of glucagon-stimulated lipolysis?” Diabetologia, vol. 56, no. 3, pp. 588–597, 2013. View at Publisher · View at Google Scholar
  23. J. E. Campbell and D. J. Drucker, “Pharmacology, physiology, and mechanisms of incretin hormone action,” Cell Metabolism, vol. 17, no. 6, pp. 819–837, 2013. View at Google Scholar