Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 756327, 17 pages
http://dx.doi.org/10.1155/2014/756327
Review Article

Microparticles: A New Perspective in Central Nervous System Disorders

1Department of Biology, University of British Columbia Okanagan Campus, 3333 University Way, Kelowna, BC, Canada V1V 1V7
2Health and Exercise Sciences, University of British Columbia Okanagan Campus, Kelowna, BC, Canada V1V 1V7

Received 17 February 2014; Accepted 13 March 2014; Published 9 April 2014

Academic Editor: Flavia Antonucci

Copyright © 2014 Stephanie M. Schindler et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Cossetti, J. A. Smith, N. Iraci, T. Leonardi, C. Alfaro-Cervello, and S. Pluchino, “Extracellular membrane vesicles and immune regulation in the brain,” Frontiers in Physiology, vol. 3, article 117, 2012. View at Publisher · View at Google Scholar
  2. A. S. Haqqani, C. E. Delaney, T.-L. Tremblay, C. Sodja, J. K. Sandhu, and D. B. Stanimirovic, “Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells,” Fluids and Barriers of the CNS, vol. 10, article 4, 2013. View at Publisher · View at Google Scholar
  3. L. Doeuvre, L. Plawinski, F. Toti, and E. Anglés-Cano, “Cell-derived microparticles: a new challenge in neuroscience,” Journal of Neurochemistry, vol. 110, no. 2, pp. 457–468, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Ratajczak, M. Wysoczynski, F. Hayek, A. Janowska-Wieczorek, and M. Z. Ratajczak, “Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication,” Leukemia, vol. 20, no. 9, pp. 1487–1495, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Pap, É. Pállinger, M. Pásztói, and A. Falus, “Highlights of a new type of intercellular communication: microvesicle-based information transfer,” Inflammation Research, vol. 58, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Camussi, M. C. Deregibus, S. Bruno, V. Cantaluppi, and L. Biancone, “Exosomes/microvesicles as a mechanism of cell-to-cell communication,” Kidney International, vol. 78, no. 9, pp. 838–848, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Raposo and W. Stoorvogel, “Extracellular vesicles: exosomes, microvesicles, and friends,” The Journal of Cell Biology, vol. 200, no. 4, pp. 373–383, 2013. View at Publisher · View at Google Scholar
  8. A. Piccin, W. G. Murphy, and O. P. Smith, “Circulating microparticles: pathophysiology and clinical implications,” Blood Reviews, vol. 21, no. 3, pp. 157–171, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. C. I. Timár, Á. M. Lőrincz, R. Csépányi-Kömi et al., “Antibacterial effect of microvesicles released from human neutrophilic granulocytes,” Blood, vol. 121, no. 3, pp. 510–518, 2013. View at Publisher · View at Google Scholar
  10. E. Colombo, B. Borgiani, C. Verderio, and R. Furlan, “Microvesicles: novel biomarkers for neurological disorders,” Frontiers in Physiology, vol. 3, article 63, 2012. View at Publisher · View at Google Scholar
  11. A. M. Booth, Y. Fang, J. K. Fallon, J.-M. Yang, J. E. K. Hildreth, and S. J. Gould, “Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane,” The Journal of Cell Biology, vol. 172, no. 6, pp. 923–935, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Wolf, “The nature and significance of platelet products in human plasma,” British Journal of Haematology, vol. 13, no. 3, pp. 269–288, 1967. View at Google Scholar · View at Scopus
  13. J. H. W. Distler, D. S. Pisetsky, L. C. Huber, J. R. Kalden, S. Gay, and O. Distler, “Microparticles as regulators of inflammation: novel players of cellular crosstalk in the rheumatic diseases,” Arthritis & Rheumatism, vol. 52, no. 11, pp. 3337–3348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. N. S. Barteneva, E. Fasler-Kan, M. Bernimoulin et al., “Circulating microparticles: square the circle,” BMC Cell Biology, vol. 14, article 23, 2013. View at Publisher · View at Google Scholar
  15. M. Markiewicz, E. Richard, N. Marks, and A. Ludwicka-Bradley, “Impact of endothelial microparticles on coagulation, inflammation, and angiogenesis in age-related vascular diseases,” Journal of Aging Research, vol. 2013, Article ID 734509, 11 pages, 2013. View at Publisher · View at Google Scholar
  16. V. Muralidharan-Chari, J. W. Clancy, A. Sedgwick, and C. D'Souza-Schorey, “Microvesicles: mediators of extracellular communication during cancer progression,” Journal of Cell Science, vol. 123, part 10, pp. 1603–1611, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Saman, W. Kim, M. Raya et al., “Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease,” The Journal of Biological Chemistry, vol. 287, no. 6, pp. 3842–3849, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. S. P. Ardoin, J. C. Shanahan, and D. S. Pisetsky, “The role of microparticles in inflammation and thrombosis,” Scandinavian Journal of Immunology, vol. 66, no. 2-3, pp. 159–165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A.-M. Marzesco, P. Janich, M. Wilsch-Bräuninger et al., “Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells,” Journal of Cell Science, vol. 118, no. 13, pp. 2849–2858, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Verderio, L. Muzio, E. Turola et al., “Myeloid microvesicles are a marker and therapeutic target for neuroinflammation,” Annals of Neurology, vol. 72, no. 4, pp. 610–624, 2012. View at Publisher · View at Google Scholar
  21. C. P.-K. Lai and X. O. Breakefield, “Role of exosomes/microvesicles in the nervous system and use in emerging therapies,” Frontiers in Physiology, vol. 3, article 228, 2012. View at Publisher · View at Google Scholar
  22. E. Matsubara, M. Shoji, T. Murakami, K. Abe, B. Frangione, and J. Ghiso, “Platelet microparticles as carriers of soluble Alzheimer's amyloid β (sAβ),” Annals of the New York Academy of Sciences, vol. 977, pp. 340–348, 2002. View at Google Scholar · View at Scopus
  23. A. Minagar, W. Jy, J. J. Jimenez et al., “Elevated plasma endothelial microparticles in multiple sclerosis,” Neurology, vol. 56, no. 10, pp. 1319–1324, 2001. View at Google Scholar · View at Scopus
  24. N. J. Scolding, B. P. Morgan, W. A. J. Houston, C. Linington, A. K. Campbell, and D. A. S. Compston, “Vesicular removal by oligodendrocytes of membrane attack complexes formed by activated complement,” Nature, vol. 339, no. 6226, pp. 620–622, 1989. View at Google Scholar · View at Scopus
  25. V. Combes, N. Coltel, M. Alibert et al., “ABCA1 gene deletion protects against cerebral malaria: potential pathogenic role of microparticles in neuropathology,” The American Journal of Pathology, vol. 166, no. 1, pp. 295–302, 2005. View at Google Scholar · View at Scopus
  26. H. B. Huttner, D. Corbeil, C. Thirmeyer et al., “Increased membrane shedding—indicated by an elevation of CD133-enriched membrane particles—into the CSF in partial epilepsy,” Epilepsy Research, vol. 99, no. 1-2, pp. 101–106, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. K. W. Witwer, E. I. Buzás, L. T. Bemis et al., “Standardization of sample collection, isolation and analysis methods in extracellular vesicle research,” Journal of Extracellular Vesicles, vol. 2, article 20360, 2013. View at Publisher · View at Google Scholar
  28. C. Théry, M. Ostrowski, and E. Segura, “Membrane vesicles as conveyors of immune responses,” Nature Reviews Immunology, vol. 9, no. 8, pp. 581–593, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Turola, R. Furlan, F. Bianco, M. Matteoli, and C. Verderio, “Microglial microvesicle secretion and intercellular signaling,” Frontiers in Physiology, vol. 3, article 149, 2012. View at Publisher · View at Google Scholar
  30. B. György, T. G. Szabó, M. Pásztói et al., “Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles,” Cellular and Molecular Life Sciences, vol. 68, no. 16, pp. 2667–2688, 2011. View at Publisher · View at Google Scholar
  31. D. Burger, S. Schock, C. S. Thompson, A. C. Montezano, A. M. Hakim, and R. M. Touyz, “Microparticles: biomarkers and beyond,” Clinical Science, vol. 124, no. 7, pp. 423–441, 2013. View at Publisher · View at Google Scholar
  32. S. Elmore, “Apoptosis: a review of programmed cell death,” Toxicologic Pathology, vol. 35, no. 4, pp. 495–516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Théry, L. Zitvogel, and S. Amigorena, “Exosomes: composition, biogenesis and function,” Nature Reviews Immunology, vol. 2, no. 8, pp. 569–579, 2002. View at Google Scholar · View at Scopus
  34. C. Théry, M. Boussac, P. Véron et al., “Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles,” Journal of Immunology, vol. 166, no. 12, pp. 7309–7318, 2001. View at Google Scholar · View at Scopus
  35. J. F. Kerr, A. H. Wyllie, and A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics,” British Journal of Cancer, vol. 26, no. 4, pp. 239–257, 1972. View at Google Scholar · View at Scopus
  36. C. D 'Souza-Schorey and J. W. Clancy, “Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers,” Genes & Development, vol. 26, no. 12, pp. 1287–1299, 2012. View at Publisher · View at Google Scholar
  37. B. Février and G. Raposo, “Exosomes: endosomal-derived vesicles shipping extracellular messages,” Current Opinion in Cell Biology, vol. 16, no. 4, pp. 415–421, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Denzer, M. J. Kleijmeer, H. F. G. Heijnen, W. Stoorvogel, and H. J. Geuze, “Exosome: from internal vesicle of the multivesicular body to intercellular signaling device,” Journal of Cell Science, vol. 113, part 19, pp. 3365–3374, 2000. View at Google Scholar · View at Scopus
  39. A. Schneider and M. Simons, “Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders,” Cell and Tissue Research, vol. 352, no. 1, pp. 33–47, 2013. View at Publisher · View at Google Scholar
  40. E. van der Pol, A. G. Hoekstra, A. Sturk, C. Otto, T. G. van Leeuwen, and R. Nieuwland, “Optical and non-optical methods for detection and characterization of microparticles and exosomes,” Journal of Thrombosis and Haemostasis, vol. 8, no. 12, pp. 2596–2607, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Frühbeis, D. Fröhlich, and E. M. Krämer-Albers, “Emerging roles of exosomes in neuron-glia communication,” Frontiers in Physiology, vol. 3, article 119, 2012. View at Publisher · View at Google Scholar
  42. M. Chivet, F. Hemming, K. Pernet-Gallay, S. Fraboulet, and R. Sadoul, “Emerging role of neuronal exosomes in the central nervous system,” Frontiers in Physiology, vol. 3, article 145, 2012. View at Publisher · View at Google Scholar
  43. E. Cocucci, G. Racchetti, and J. Meldolesi, “Shedding microvesicles: artefacts no more,” Trends in Cell Biology, vol. 19, no. 2, pp. 43–51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Mathivanan, C. J. Fahner, G. E. Reid, and R. J. Simpson, “ExoCarta 2012: database of exosomal proteins, RNA and lipids,” Nucleic Acids Research, vol. 40, no. 1, pp. D1241–D1244, 2012. View at Publisher · View at Google Scholar
  45. B. Hugel, M. C. Martínez, C. Kunzelmann, and J.-M. Freyssinet, “Membrane microparticles: two sides of the coin,” Physiology (Bethesda), vol. 20, no. 1, pp. 22–27, 2005. View at Google Scholar · View at Scopus
  46. A.-L. Ståhl, L. Sartz, and D. Karpman, “Complement activation on platelet-leukocyte complexes and microparticles in enterohemorrhagic Escherichia coli-induced hemolytic uremic syndrome,” Blood, vol. 117, no. 20, pp. 5503–5513, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. A. D. Terrisse, N. Puech, S. Allart et al., “Internalization of microparticles by endothelial cells promotes platelet/endothelial cell interaction under flow,” Journal of Thrombosis and Haemostasis, vol. 8, no. 12, pp. 2810–2819, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Takano, N. Asazuma, K. Satoh, Y. Yatomi, and Y. Ozaki, “Collagen-induced generation of platelet-derived microparticles in whole blood is dependent on ADP released from red blood cells and calcium ions,” Platelets, vol. 15, no. 4, pp. 223–229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Nomura, T. Nakamura, J. Cone, N. N. Tandon, and J. Kambayashi, “Cytometric analysis of high shear-induced platelet microparticles and effect of cytokines on microparticle generation,” Cytometry, vol. 40, no. 3, pp. 173–181, 2000. View at Google Scholar
  50. F. Bianco, E. Pravettoni, A. Colombo et al., “Astrocyte-derived ATP induces vesicle shedding and IL-1β release from microglia,” Journal of Immunology, vol. 174, no. 11, pp. 7268–7277, 2005. View at Google Scholar · View at Scopus
  51. J. Eyre, J. O. Burton, M. A. Saleem, P. W. Mathieson, P. S. Topham, and N. J. Brunskill, “Monocyte-and endothelial-derived microparticles induce an inflammatory phenotype in human podocytes,” Nephron Experimental Nephrology, vol. 119, no. 3, pp. e58–e66, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Ben-Hadj-Khalifa-Kechiche, N. Hezard, S. Poitevin et al., “Differential inhibitory effect of fondaparinux on the procoagulant potential of intact monocytes and monocyte-derived microparticles,” Journal of Thrombosis and Thrombolysis, vol. 30, no. 4, pp. 412–418, 2010. View at Google Scholar · View at Scopus
  53. M. D. Brown, D. L. Feairheller, S. Thakkar, P. Veerabhadrappa, and J.-Y. Park, “Racial differences in tumor necrosis factor-α-induced endothelial microparticles and interleukin-6 production,” Vascular Health and Risk Management, vol. 7, pp. 541–550, 2011. View at Google Scholar · View at Scopus
  54. D. B. Peterson, T. Sander, S. Kaul et al., “Comparative proteomic analysis of PAI-1 and TNF-alpha-derived endothelial microparticles,” Proteomics, vol. 8, no. 12, pp. 2430–2446, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. J. H. W. Distler, L. C. Huber, A. J. Hueber et al., “The release of microparticles by apoptotic cells and their effects on macrophages,” Apoptosis, vol. 10, no. 4, pp. 731–741, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. M. N. A. Hussein, A. N. Böing, A. Sturk, C. M. Hau, and R. Nieuwland, “Inhibition of microparticle release triggers endothelial cell apoptosis and detachment,” Thrombosis and Haemostasis, vol. 98, no. 5, pp. 1096–1107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Devaraj, P. R. Kumaresan, and I. Jialal, “C-reactive protein induces release of both endothelial microparticles and circulating endothelial cells in vitro and in vivo: further evidence of endothelial dysfunction,” Clinical Chemistry, vol. 57, no. 12, pp. 1757–1761, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. J. M. Wang, Y. Wang, J.-Y. Huang et al., “C-reactive protein-induced endothelial microparticle generation in HUVECs is related to BH4-dependent NO formation,” Journal of Vascular Research, vol. 44, no. 3, pp. 241–248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. S. del Turco, G. Basta, G. Lazzerini et al., “Parallel decrease of tissue factor surface exposure and increase of tissue factor microparticle release by the n-3 fatty acid docosahexaenoate in endothelial cells,” Thrombosis and Haemostasis, vol. 98, no. 1, pp. 210–219, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. N. T. Jenkins, J. Padilla, L. J. Boyle, D. P. Credeur, M. H. Laughlin, and P. J. Fadel, “Disturbed blood flow acutely induces activation and apoptosis of the human vascular endothelium,” Hypertension, vol. 61, no. 3, pp. 615–621, 2013. View at Publisher · View at Google Scholar
  61. S. Cauwenberghs, M. A. H. Feijge, A. G. S. Harper, S. O. Sage, J. Curvers, and J. W. M. Heemskerk, “Shedding of procoagulant microparticles from unstimulated platelets by integrin-mediated destabilization of actin cytoskeleton,” FEBS Letters, vol. 580, no. 22, pp. 5313–5320, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Flaumenhaft, J. R. Dilks, J. Richardson et al., “Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles,” Blood, vol. 113, no. 5, pp. 1112–1121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Yano, E. Shiba, J.-I. Kambayashi et al., “The effects of calpeptin (a calpain specific inhibitor) on agonist induced microparticle formation from the platelet plasma membrane,” Thrombosis Research, vol. 71, no. 5, pp. 385–396, 1993. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Nolan, R. Dixon, K. Norman, P. Hellewell, and V. Ridger, “Nitric oxide regulates neutrophil migration through microparticle formation,” The American Journal of Pathology, vol. 172, no. 1, pp. 265–273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. J. C. Mills, N. L. Stone, J. Erhardt, and R. N. Pittman, “Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation,” The Journal of Cell Biology, vol. 140, no. 3, pp. 627–636, 1998. View at Publisher · View at Google Scholar · View at Scopus
  66. M. L. Coleman, E. A. Sahai, M. Yeo, M. Bosch, A. Dewar, and M. F. Olson, “Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I,” Nature Cell Biology, vol. 3, no. 4, pp. 339–345, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. C. Sapet, S. Simoncini, B. Loriod et al., “Thrombin-induced endothelial microparticle generation: identification of a novel pathway involving ROCK-II activation by caspase-2,” Blood, vol. 108, no. 6, pp. 1868–1876, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. J. van den Akker, A. van Weert, G. Afink et al., “Transglutaminase 2 is secreted from smooth muscle cells by transamidation-dependent microparticle formation,” Amino Acids, vol. 42, no. 2-3, pp. 961–973, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. J.-M. Freyssinet, “Cellular microparticles: what are they bad or good for?” Journal of Thrombosis and Haemostasis, vol. 1, no. 7, pp. 1655–1662, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. L. L. Horstman, W. Jy, J. J. Jimenez, C. Bidot, and Y. S. Ahn, “New horizons in the analysis of circulating cell-derived microparticles,” The Keio Journal of Medicine, vol. 53, no. 4, pp. 210–230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. L. A. Hargett and N. N. Bauer, “On the origin of microparticles: from “platelet dust” to mediators of intercellular communication,” Pulmonary Circulation, vol. 3, no. 2, pp. 329–340, 2013. View at Publisher · View at Google Scholar
  72. J. Dachary-Prigent, J.-M. Pasquet, E. Fressinaud, F. Toti, J.-M. Freyssinet, and A. T. Nurden, “Aminophospholipid exposure, microvesiculation and abnormal protein tyrosine phosphorylation in the platelets of a patient with Scott syndrome: a study using physiologic agonists and local anaesthetics,” British Journal of Haematology, vol. 99, no. 4, pp. 959–967, 1997. View at Google Scholar · View at Scopus
  73. M. Bernimoulin, E. K. Waters, M. Foy et al., “Differential stimulation of monocytic cells results in distinct populations of microparticles,” Journal of Thrombosis and Haemostasis, vol. 7, no. 6, pp. 1019–1028, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. F. Bianco, C. Perrotta, L. Novellino et al., “Acid sphingomyelinase activity triggers microparticle release from glial cells,” EMBO Journal, vol. 28, no. 8, pp. 1043–1054, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. F. Antonucci, E. Turola, L. Riganti et al., “Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism,” EMBO Journal, vol. 31, no. 5, pp. 1231–1240, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Cerri, D. Chimenti, I. Conti, T. Neri, P. Paggiaro, and A. Celi, “Monocyte/macrophage-derived microparticles up-regulate inflammatory mediator synthesis by human airway epithelial cells,” Journal of Immunology, vol. 177, no. 3, pp. 1975–1980, 2006. View at Google Scholar · View at Scopus
  77. L. Daniel, F. Fakhouri, D. Joly et al., “Increase of circulating neutrophil and platelet microparticles during acute vasculitis and hemodialysis,” Kidney International, vol. 69, no. 8, pp. 1416–1423, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. B. Köppler, C. Cohen, D. Schlöndorff, and M. Mack, “Differential mechanisms of microparticle transfer to B cells and monocytes: anti-inflammatory properties of microparticles,” European Journal of Immunology, vol. 36, no. 3, pp. 648–660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. J. J. Jimenez, W. Jy, L. M. Mauro, C. Soderland, L. L. Horstman, and Y. S. Ahn, “Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis,” Thrombosis Research, vol. 109, no. 4, pp. 175–180, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. O. Morel, F. Toti, B. Hugel, and J.-M. Freyssinet, “Cellular microparticles: a disseminated storage pool of bioactive vascular effectors,” Current Opinion in Hematology, vol. 11, no. 3, pp. 156–164, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. A. MacKenzie, H. L. Wilson, E. Kiss-Toth, S. K. Dower, R. A. North, and A. Surprenant, “Rapid secretion of interleukin-1β by microvesicle shedding,” Immunity, vol. 15, no. 5, pp. 825–835, 2001. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Li, Y. Zhang, Y. Liu et al., “Microvesicle-mediated transfer of microRNA-150 from monocytes to endothelial cells promotes angiogenesis,” The Journal of Biological Chemistry, vol. 288, no. 32, pp. 23586–23596, 2013. View at Publisher · View at Google Scholar
  83. A.-M. Marzesco, “Prominin-1-containing membrane vesicles: origins, formation, and utility,” in Prominin-1 (CD133): New Insights on Stem & Cancer Stem Cell Biology, vol. 777 of Advances in Experimental Medicine and Biology, pp. 41–54, Springer, New York, NY, USA, 2013. View at Publisher · View at Google Scholar
  84. O. Sbai, A. Ould-Yahoui, L. Ferhat et al., “Differential vesicular distribution and trafficking of MMP-2, MMP-9, and their inhibitors in astrocytes,” Glia, vol. 58, no. 3, pp. 344–366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. T. P. Lozito and R. S. Tuan, “Endothelial cell microparticles act as centers of matrix metalloproteinsase-2 (MMP-2) activation and vascular matrix remodeling,” Journal of Cellular Physiology, vol. 227, no. 2, pp. 534–549, 2012. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Canault, A. S. Leroyer, F. Peiretti et al., “Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-α converting enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1,” The American Journal of Pathology, vol. 171, no. 5, pp. 1713–1723, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. G. Müller, “Novel tools for the study of cell type-specific exosomes and microvesicles,” Journal of Bioanalysis & Biomedicine, vol. 4, no. 4, pp. 46–60, 2012. View at Publisher · View at Google Scholar
  88. R. A. Dragovic, C. Gardiner, A. S. Brooks et al., “Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis,” Nanomedicine, vol. 7, no. 6, pp. 780–788, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Y. Soo, Y. Song, Y. Zheng et al., “Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells,” Immunology, vol. 136, no. 2, pp. 192–197, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Wright, “Nanoparticle tracking analysis for the multiparameter characterization and counting of nanoparticle suspensions,” in Nanoparticles in Biology and Medicine, vol. 906 of Methods in Molecular Biology, pp. 511–524, Humana Press, New Jersey, NJ, USA, 2012. View at Publisher · View at Google Scholar
  91. A. K. Enjeti, L. Lincz, and M. Seldon, “Bio-maleimide as a generic stain for detection and quantitation of microparticles,” International Journal of Laboratory Hematology, vol. 30, no. 3, pp. 196–199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. R. Grant, E. Ansa-Addo, D. Stratton et al., “A filtration-based protocol to isolate human plasma membrane-derived vesicles and exosomes from blood plasma,” Journal of Immunological Methods, vol. 371, no. 1-2, pp. 143–151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. P. A. Holme, N. O. Solum, F. Brosstad, M. Roger, and M. Abdelnoor, “Demonstration of platelet-derived microvesicles in blood from patients with activated coagulation and fibrinolysis using a filtration technique and western blotting,” Thrombosis and Haemostasis, vol. 72, no. 5, pp. 666–671, 1994. View at Google Scholar · View at Scopus
  94. M. L. Merchant, D. W. Powell, D. W. Wilkey et al., “Microfiltration isolation of human urinary exosomes for characterization by MS,” Proteomics: Clinical Applications, vol. 4, no. 1, pp. 84–96, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. A. M. Falchi, V. Sogos, F. Saba, M. Piras, T. Congiu, and M. Piludu, “Astrocytes shed large membrane vesicles that contain mitochondria, lipid droplets and ATP,” Histochemistry and Cell Biology, vol. 139, no. 2, pp. 221–231, 2013. View at Publisher · View at Google Scholar
  96. E. J. van Beers, M. C. L. Schaap, R. J. Berckmans et al., “Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease,” Haematologica, vol. 94, no. 11, pp. 1513–1519, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. A. S. Shet, O. Aras, K. Gupta et al., “Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes,” Blood, vol. 102, no. 7, pp. 2678–2683, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. L. L. Horstman, W. Jy, A. Minagar et al., “Cell-derived microparticles and exosomes in neuroinflammatory disorders,” International Review of Neurobiology, vol. 79, pp. 227–268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. N. Aoki, S. Jin-No, Y. Nakagawa et al., “Identification and characterization of microvesicles secreted by 3T3-L1 adipocytes: redox- and hormone-dependent induction of milk fat globule-epidermal growth factor 8-associated microvesicles,” Endocrinology, vol. 148, no. 8, pp. 3850–3862, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. L. Issman, B. Brenner, Y. Talmon, and A. Aharon, “Cryogenic transmission electron microscopy nanostructural study of shed microparticles,” PLoS ONE, vol. 8, no. 12, article e83680, 2013. View at Publisher · View at Google Scholar
  101. C. Porro, S. Lepore, T. Trotta et al., “Isolation and characterization of microparticles in sputum from cystic fibrosis patients,” Respiratory Research, vol. 11, article 94, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. R. P. Witek, L. Yang, R. Liu et al., “Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells,” Gastroenterology, vol. 136, no. 1, pp. 320.e2–330.e2, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. C. M. Hoo, N. Starostin, P. West, and M. L. Mecartney, “A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions,” Journal of Nanoparticle Research, vol. 10, no. 1, pp. 89–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. Q. Zhang, Y. Li, and R. W. Tsien, “The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles,” Science, vol. 323, no. 5920, pp. 1448–1453, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. E. van der Pol, M. J. C. van Gemert, A. Sturk, R. Nieuwland, and T. G. van Leeuwen, “Single vs. swarm detection of microparticles and exosomes by flow cytometry,” Journal of Thrombosis and Haemostasis, vol. 10, no. 5, pp. 919–930, 2012. View at Publisher · View at Google Scholar · View at Scopus
  106. L. Ayers, M. Kohler, P. Harrison et al., “Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay,” Thrombosis Research, vol. 127, no. 4, pp. 370–377, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. A. Waldenström, N. Gennebäck, U. Hellman, and G. Ronquist, “Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells,” PLoS ONE, vol. 7, no. 4, Article ID e34653, 2012. View at Publisher · View at Google Scholar · View at Scopus
  108. B. Carr, P. Hole, A. Malloy et al., “Application of nanoparticle tracking analysis in nanoparticle research-a mini-review,” European Journal of Parenteral & Pharmaceutical Sciences, vol. 14, no. 2, pp. 35–40, 2009. View at Google Scholar
  109. G. Schiera, P. Proia, C. Alberti, M. Mineo, G. Savettieri, and I. di Liegro, “Neurons produce FGF2 and VEGF and secrete them at least in part by shedding extracellular vesicles,” Journal of Cellular and Molecular Medicine, vol. 11, no. 6, pp. 1384–1394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. R. M. Campbell and A. C. Peterson, “Expression of a lacZ transgene reveals floor plate cell morphology and macromolecular transfer to commissural axons,” Development, vol. 119, no. 4, pp. 1217–1228, 1993. View at Google Scholar · View at Scopus
  111. M. Bakhti, C. Winter, and M. Simons, “Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles,” The Journal of Biological Chemistry, vol. 286, no. 1, pp. 787–796, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. J. Fauré, G. Lachenal, M. Court et al., “Exosomes are released by cultured cortical neurones,” Molecular and Cellular Neuroscience, vol. 31, no. 4, pp. 642–648, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. M. A. Lopez-Verrilli and F. A. Court, “Transfer of vesicles from schwann cells to axons: a novel mechanism of communication in the peripheral nervous system,” Frontiers in Physiology, vol. 3, article 205, 2012. View at Publisher · View at Google Scholar
  114. F. A. Court, R. Midha, B. A. Cisterna et al., “Morphological evidence for a transport of ribosomes from Schwann cells to regenerating axons,” Glia, vol. 59, no. 10, pp. 1529–1539, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. C. Frühbeis, D. Fröhlich, W. P. Kuo et al., “Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication,” PLoS Biology, vol. 11, no. 7, Article ID e1001604, 2013. View at Publisher · View at Google Scholar
  116. G. Ma, F. Liu, L. Lv, Y. Gao, and Y. Su, “Increased promyelocytic-derived microparticles: a novel potential factor for coagulopathy in acute promyelocytic leukemia,” Annals of Hematology, vol. 92, no. 5, pp. 645–652, 2013. View at Publisher · View at Google Scholar
  117. J. Skog, T. Würdinger, S. van Rijn et al., “Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers,” Nature Cell Biology, vol. 10, no. 12, pp. 1470–1476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. J. Thaler, C. Ay, N. Mackman et al., “Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients,” Journal of Thrombosis and Haemostasis, vol. 10, no. 7, pp. 1363–1370, 2012. View at Publisher · View at Google Scholar
  119. G. Reynes, V. Vila, T. Fleitas et al., “Circulating endothelial cells and procoagulant microparticles in patients with glioblastoma: prognostic value,” PLoS ONE, vol. 8, no. 7, Article ID e69034, 2013. View at Publisher · View at Google Scholar
  120. S. Liebhardt, N. Ditsch, R. Nieuwland et al., “CEA-, Her2/neu-, BCRP- and Hsp27-positive microparticles in breast cancer patients,” Anticancer Research, vol. 30, no. 5, pp. 1707–1712, 2010. View at Google Scholar · View at Scopus
  121. G. Hron, M. Kollars, H. Weber et al., “Tissue factor-positive microparticles: cellular origin and association with coagulation activation in patients with colorectal cancer,” Thrombosis and Haemostasis, vol. 97, no. 1, pp. 119–123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. H. K. Kim, K. S. Song, Y. S. Park et al., “Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor,” European Journal of Cancer, vol. 39, no. 2, pp. 184–191, 2003. View at Publisher · View at Google Scholar · View at Scopus
  123. S. Kanazawa, S. Nomura, M. Kuwana, M. Muramatsu, K. Yamaguchi, and S. Fukuhara, “Monocyte-derived microparticles may be a sign of vascular complication in patients with lung cancer,” Lung Cancer, vol. 39, no. 2, pp. 145–149, 2003. View at Publisher · View at Google Scholar · View at Scopus
  124. K. Haubold, M. Rink, B. Spath et al., “Tissue factor procoagulant activity of plasma microparticles is increased in patients with early-stage prostate cancer,” Thrombosis and Haemostasis, vol. 101, no. 6, pp. 1147–1155, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. D. Helley, E. Banu, A. Bouziane et al., “Platelet microparticles: a potential predictive factor of survival in hormone-refractory prostate cancer patients treated with docetaxel-based chemotherapy,” European Urology, vol. 56, no. 3, pp. 479–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. P. Chamouard, D. Desprez, B. Hugel et al., “Circulating cell-derived microparticles in Crohn's disease,” Digestive Diseases and Sciences, vol. 50, no. 3, pp. 574–580, 2005. View at Publisher · View at Google Scholar · View at Scopus
  127. D. Leonetti, J. M. Reimund, A. Tesse et al., “Circulating microparticles from Crohn's disease patients cause endothelial and vascular dysfunctions,” PLoS ONE, vol. 8, no. 9, Article ID e73088, 2013. View at Publisher · View at Google Scholar
  128. B. Feng, Y. Chen, Y. Luo, M. Chen, X. Li, and Y. Ni, “Circulating level of microparticles and their correlation with arterial elasticity and endothelium-dependent dilation in patients with type 2 diabetes mellitus,” Atherosclerosis, vol. 208, no. 1, pp. 264–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. S. Nomura, S. Kanazawa, and S. Fukuhara, “Effects of efonidipine on platelet and monocyte activation markers in hypertensive patients with and without type 2 diabetes mellitus,” Journal of Human Hypertension, vol. 16, no. 8, pp. 539–547, 2002. View at Publisher · View at Google Scholar · View at Scopus
  130. S. Nomura, “Dynamic role of microparticles in type 2 diabetes mellitus,” Current Diabetes Reviews, vol. 5, no. 4, pp. 245–251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. A. F. Tramontano, R. Lyubarova, J. Tsiakos, T. Palaia, J. R. Deleon, and L. Ragolia, “Circulating endothelial microparticles in diabetes mellitus,” Mediators of Inflammation, vol. 2010, Article ID 250476, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. A. S. Leroyer, A. Tedgui, and C. M. Boulanger, “Microparticles and type 2 diabetes,” Diabetes & Metabolism, vol. 34, supplement 1, pp. 27–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  133. R. J. Berckmans, R. Nieuwland, M. C. Kraan et al., “Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes,” Arthritis Research & Therapy, vol. 7, no. 3, pp. R536–R544, 2005. View at Google Scholar · View at Scopus
  134. E. A. J. Knijff-Dutmer, J. Koerts, R. Nieuwland, E. M. Kalsbeek-Batenburg, and M. A. F. J. van de Laar, “Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis,” Arthritis & Rheumatism, vol. 46, no. 6, pp. 1498–1503, 2002. View at Publisher · View at Google Scholar · View at Scopus
  135. K. P. Crookston, W. L. Sibbitt Jr., W. L. Chandler, C. R. Qualls, and C. A. Roldan, “Circulating microparticles in neuropsychiatric systemic lupus erythematosus,” International Journal of Rheumatic Diseases, vol. 16, no. 1, pp. 72–80, 2013. View at Publisher · View at Google Scholar
  136. M. Kornek, M. Lynch, S. H. Mehta et al., “Circulating microparticles as disease-specific biomarkers of severity of inflammation in patients with hepatitis C or nonalcoholic steatohepatitis,” Gastroenterology, vol. 143, no. 2, pp. 448–458, 2012. View at Publisher · View at Google Scholar
  137. L. Bernal-Mizrachi, W. Jy, J. J. Jimenez et al., “High levels of circulating endothelial microparticles in patients with acute coronary syndromes,” American Heart Journal, vol. 145, no. 6, pp. 962–970, 2003. View at Publisher · View at Google Scholar · View at Scopus
  138. L. Bernal-Mizrachi, W. Jy, C. Fierro et al., “Endothelial microparticles correlate with high-risk angiographic lesions in acute coronary syndromes,” International Journal of Cardiology, vol. 97, no. 3, pp. 439–446, 2004. View at Publisher · View at Google Scholar · View at Scopus
  139. N. Werner, S. Wassmann, P. Ahlers, S. Kosiol, and G. Nickenig, “Circulating CD31+/annexin V+ apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 1, pp. 112–116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  140. R. A. Preston, W. Jy, J. J. Jimenez et al., “Effects of severe hypertension on endothelial and platelet microparticles,” Hypertension, vol. 41, no. 2, pp. 211–217, 2003. View at Publisher · View at Google Scholar · View at Scopus
  141. B. A. Steppich, M. Hassenpflug, S. L. Braun et al., “Circulating tissue factor and microparticles are not increased in patients with deep vein thrombosis,” Vasa, vol. 40, no. 2, pp. 117–122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  142. C. Jung, P. Sörensson, N. Saleh, H. Arheden, L. Rydén, and J. Pernow, “Circulating endothelial and platelet derived microparticles reflect the size of myocardium at risk in patients with ST-elevation myocardial infarction,” Atherosclerosis, vol. 221, no. 1, pp. 226–231, 2012. View at Publisher · View at Google Scholar · View at Scopus
  143. V. H. González-Quintero, J. J. Jiménez, W. Jy et al., “Elevated plasma endothelial microparticles in preeclampsia,” American Journal of Obstetrics and Gynecology, vol. 189, no. 2, pp. 589–593, 2003. View at Google Scholar · View at Scopus
  144. N. Amabile, C. Heiss, V. Chang et al., “Increased CD62e+ endothelial microparticle levels predict poor outcome in pulmonary hypertension patients,” The Journal of Heart and Lung Transplantation, vol. 28, no. 10, pp. 1081–1086, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. P. A. Brogan, V. Shah, C. Brachet et al., “Endothelial and platelet microparticles in vasculitis of the young,” Arthritis & Rheumatism, vol. 50, no. 3, pp. 927–936, 2004. View at Publisher · View at Google Scholar · View at Scopus
  146. S. Xue, X. Cai, W. Li, Z. Zhang, W. Dong, and G. Hui, “Elevated plasma endothelial microparticles in Alzheimer's disease,” Dementia and Geriatric Cognitive Disorders, vol. 34, no. 3-4, pp. 174–180, 2012. View at Publisher · View at Google Scholar
  147. M. Huang, Y.-Y. Hu, and X.-Q. Dong, “High concentrations of procoagulant microparticles in the cerebrospinal fluid and peripheral blood of patients with acute basal ganglia hemorrhage are associated with poor outcome,” Surgical Neurology, vol. 72, no. 5, pp. 481–489, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. V. Combes, G. J. Guillemin, T. Chan-Ling, N. H. Hunt, and G. E. R. Grau, “The crossroads of neuroinflammation in infectious diseases: endothelial cells and astrocytes,” Trends in Parasitology, vol. 28, no. 8, pp. 311–319, 2012. View at Publisher · View at Google Scholar
  149. P. Cherian, G. J. Hankey, J. W. Eikelboom et al., “Endothelial and platelet activation in acute ischemic stroke and its etiological subtypes,” Stroke, vol. 34, no. 9, pp. 2132–2137, 2003. View at Publisher · View at Google Scholar · View at Scopus
  150. J. Simak, M. P. Gelderman, H. Yu, V. Wright, and A. E. Baird, “Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome,” Journal of Thrombosis and Haemostasis, vol. 4, no. 6, pp. 1296–1302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  151. J. B. Williams, E. C. Jauch, C. J. Lindsell, and B. Campos, “Endothelial microparticle levels are similar in acute ischemic stroke and stroke mimics due to activation and not apoptosis/necrosis,” Academic Emergency Medicine, vol. 14, no. 8, pp. 685–690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  152. W. Jy, A. Minagar, J. J. Jimenez et al., “Endothelial microparticles (EMP) bind and activate monocytes: elevated EMP-monocyte conjugates in multiple sclerosis,” Frontiers in Bioscience, vol. 9, pp. 3137–3144, 2004. View at Google Scholar · View at Scopus
  153. W. A. Sheremata, W. Jy, L. L. Horstman, Y. S. Ahn, J. S. Alexander, and A. Minagar, “Evidence of platelet activation in multiple sclerosis,” Journal of Neuroinflammation, vol. 5, article 27, 2008. View at Publisher · View at Google Scholar · View at Scopus
  154. M. Huang, H.-B. Cai, Y.-Y. Hu, and X.-Q. Dong, “Change in plasma microparticle procoagulant activity after traumatic brain injury,” Zhonghua Yi Xue Za Zhi, vol. 89, no. 32, pp. 2265–2268, 2009. View at Google Scholar · View at Scopus
  155. N. Morel, O. Morel, L. Petit et al., “Generation of procoagulant microparticles in cerebrospinal fluid and peripheral blood after traumatic brain injury,” Journal of Trauma, vol. 64, no. 3, pp. 698–704, 2008. View at Publisher · View at Google Scholar · View at Scopus
  156. R. J. Berckmans, R. Nieuwland, A. N. Böing, F. P. Romijn, C. E. Hack, and A. Sturk, “Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation,” Thrombosis and Haemostasis, vol. 85, no. 4, pp. 639–646, 2001. View at Google Scholar · View at Scopus
  157. F. Bretelle, F. Sabatier, D. Desprez et al., “Circulating microparticles: a marker of procoagulant state in normal pregnancy and pregnancy complicated by preeclampsia or intrauterine growth restriction,” Thrombosis and Haemostasis, vol. 89, no. 3, pp. 486–492, 2003. View at Google Scholar · View at Scopus
  158. F. L. A. Willekens, J. M. Werre, J. K. Kruijt et al., “Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors,” Blood, vol. 105, no. 5, pp. 2141–2145, 2005. View at Publisher · View at Google Scholar · View at Scopus
  159. R. Sharma, P. Muttil, A. B. Yadav et al., “Uptake of inhalable microparticles affects defence responses of macrophages infected with Mycobacterium tuberculosis H37Ra,” Journal of Antimicrobial Chemotherapy, vol. 59, no. 3, pp. 499–506, 2007. View at Publisher · View at Google Scholar · View at Scopus
  160. K. Pattanapanyasat, S. Gonwong, P. Chaichompoo et al., “Activated platelet-derived microparticles in thalassaemia,” British Journal of Haematology, vol. 136, no. 3, pp. 462–471, 2007. View at Publisher · View at Google Scholar · View at Scopus
  161. M. L. Litvack, M. Post, and N. Palaniyar, “IgM promotes the clearance of small particles and apoptotic microparticles by macrophages,” PLoS ONE, vol. 6, no. 3, Article ID e17223, 2011. View at Publisher · View at Google Scholar · View at Scopus
  162. X. Loyer, A.-C. Vion, A. Tedgui, and C. M. Boulanger, “Microvesicles as cell-cell messengers in cardiovascular diseases,” Circulation Research, vol. 114, no. 2, pp. 345–353, 2014. View at Publisher · View at Google Scholar
  163. K. Al-Nedawi, B. Meehan, and J. Rak, “Microvesicles: messengers and mediators of tumor progression,” Cell Cycle, vol. 8, no. 13, pp. 2014–2018, 2009. View at Google Scholar · View at Scopus
  164. M. Eriksson, D. Nelson, A. Nordgren, and A. Larsson, “Increased platelet microvesicle formation is associated with mortality in a porcine model of endotoxemia,” Acta Anaesthesiologica Scandinavica, vol. 42, no. 5, pp. 551–557, 1998. View at Google Scholar · View at Scopus
  165. S. Zahra, J. A. M. Anderson, D. Stirling, and C. A. Ludlam, “Plasma microparticles are not elevated in fresh plasma from patients with gynaecological malignancy—an observational study,” Gynecologic Oncology, vol. 123, no. 1, pp. 152–156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  166. Y. Hayon, O. Dashevsky, E. Shai, D. Varon, and R. R. Leker, “Platelet microparticles promote neural stem cell proliferation, survival and differentiation,” Journal of Molecular Neuroscience, vol. 47, no. 3, pp. 659–665, 2012. View at Publisher · View at Google Scholar · View at Scopus
  167. E. M. Frohman, M. K. Racke, and C. S. Raine, “Medical progress: multiple sclerosis—the plaque and its pathogenesis,” The New England Journal of Medicine, vol. 354, no. 9, pp. 942–955, 2006. View at Publisher · View at Google Scholar · View at Scopus
  168. W. A. Sheremata, W. Jy, S. Delgado, A. Minagar, J. McLarty, and Y. Ahn, “Interferon-β1a reduces plasma CD31+ endothelial microparticles (CD31+EMP) in multiple sclerosis,” Journal of Neuroinflammation, vol. 3, article 23, 2006. View at Publisher · View at Google Scholar · View at Scopus
  169. M. Lowery-Nordberg, E. Eaton, E. Gonzalez-Toledo et al., “The effects of high dose interferon-β1a on plasma microparticles: correlation with MRI parameters,” Journal of Neuroinflammation, vol. 8, article 43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  170. J. J. Jimenez, W. Jy, L. M. Mauro et al., “Elevated endothelial microparticle-monocyte complexes induced by multiple sclerosis plasma and the inhibitory effects of interferon-β1b on release of endothelial microparticles, formation and transendothelial migration of monocyte-endothelial microparticle complexes,” Multiple Sclerosis, vol. 11, no. 3, pp. 310–315, 2005. View at Publisher · View at Google Scholar · View at Scopus
  171. V. Combes, T. E. Taylor, I. Juhan-Vague et al., “Circulating endothelial microparticles in Malawian children with severe falciparum malaria complicated with coma,” The Journal of the American Medical Association, vol. 291, no. 21, pp. 2542–2544, 2004. View at Google Scholar · View at Scopus
  172. S. A. Bellingham, B. B. Guo, B. M. Coleman, and A. F. Hill, “Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases?” Frontiers in Physiology, vol. 3, article 124, 2012. View at Publisher · View at Google Scholar
  173. R. A. Stelzmann, H. N. Schnitzlein, and F. R. Murtagh, “An English translation of Alzheimer's 1907 paper, “über eine eigenartige erkankung der hirnrinde’,” Clinical Anatomy, vol. 8, no. 6, pp. 429–431, 1995. View at Publisher · View at Google Scholar · View at Scopus
  174. S. Catricala, M. Torti, and G. Ricevuti, “Alzheimer disease and platelets: how's that relevant,” Immunity & Ageing, vol. 9, article 20, 2012. View at Publisher · View at Google Scholar
  175. G. F. Hall and S. Saman, “Death or secretion? The demise of a plausible assumption about CSF-tau in Alzheimer disease?” Communicative & Integrative Biology, vol. 5, no. 6, pp. 623–626, 2012. View at Google Scholar
  176. S. Nomura, Y. Komiyama, T. Miyake et al., “Amyloid β-protein precursor-rich platelet microparticles in thrombotic disease,” Thrombosis and Haemostasis, vol. 72, no. 4, pp. 519–522, 1994. View at Google Scholar · View at Scopus
  177. M. H. Klinger, “Platelets and inflammation,” Anatomy and Embryology, vol. 196, no. 1, pp. 1–11, 1997. View at Publisher · View at Google Scholar
  178. P. Joshi, E. Turola, A. Ruiz et al., “Microglia convert aggregated amyloid-β into neurotoxic forms through the shedding of microvesicles,” Cell Death & Differentiation, vol. 21, no. 4, pp. 582–593, 2013. View at Publisher · View at Google Scholar
  179. K. H. Ashe and A. Aguzzi, “Prions, prionoids and pathogenic proteins in Alzheimer disease,” Prion, vol. 7, no. 1, pp. 55–59, 2013. View at Publisher · View at Google Scholar
  180. A. Aguzzi and L. Rajendran, “The transcellular spread of cytosolic amyloids, prions, and prionoids,” Neuron, vol. 64, no. 6, pp. 783–790, 2009. View at Publisher · View at Google Scholar · View at Scopus
  181. M. D. Kane, W. J. Lipinski, M. J. Callahan et al., “Evidence for seeding of β-amyloid by intracerebral infusion of Alzheimer brain extracts in β-amyloid precursor protein-transgenic mice,” The Journal of Neuroscience, vol. 20, no. 10, pp. 3606–3611, 2000. View at Google Scholar · View at Scopus
  182. M. Meyer-Luehmann, J. Coomaraswamy, T. Bolmont et al., “Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host,” Science, vol. 313, no. 5794, pp. 1781–1784, 2006. View at Publisher · View at Google Scholar · View at Scopus
  183. R. Morales, C. Duran-Aniotz, J. Castilla, L. D. Estrada, and C. Soto, “De novo induction of amyloid-β deposition in vivo,” Molecular Psychiatry, vol. 17, no. 12, pp. 1347–1353, 2012. View at Publisher · View at Google Scholar · View at Scopus
  184. S. EL Andaloussi, I. Mager, X. O. Breakefield, and M. J. Wood, “Extracellular vesicles: biology and emerging therapeutic opportunities,” Nature Reviews Drug Discovery, vol. 12, no. 5, pp. 347–357, 2013. View at Publisher · View at Google Scholar