Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 756347, 8 pages
http://dx.doi.org/10.1155/2014/756347
Research Article

MicroRNA Expression in Salivary Supernatant of Patients with Pancreatic Cancer and Its Relationship with ZHENG

1Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China

Received 14 March 2014; Accepted 27 May 2014; Published 14 July 2014

Academic Editor: Zhiqiang Meng

Copyright © 2014 Song Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Chen and P. Wang, “Clinical distribution and molecular basis of traditional Chinese medicine ZHENG in cancer,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 783923, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Zhang, J. E. Dahlberg, and W. Tam, “MicroRNAs in tumorigenesis: a primer,” The American Journal of Pathology, vol. 171, no. 3, pp. 728–738, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Y. Nikitin and D. C. Corney, “MicroRNA and ovarian cancer,” Histology and Histopathology, vol. 23, no. 9, pp. 1161–1169, 2008. View at Google Scholar · View at Scopus
  4. L. Zhang, S. Volinia, M. J. Birrer et al., “Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 19, pp. 7004–7009, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Giannakakis, G. Coukos, A. Hatzigeorgiou, R. Sandaltzopoulos, and L. Zhang, “miRNA genetic alterations in human cancers,” Expert Opinion on Biological Therapy, vol. 7, no. 9, pp. 1375–1386, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Yang, G. Coukos, and L. Zhang, “MicroRNA epigenetic alterations in human cancer: one step forward in diagnosis and treatment,” International Journal of Cancer, vol. 122, no. 5, pp. 963–968, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. F. J. Slack and J. B. Weidhaas, “MicroRNA in cancer prognosis,” The New England Journal of Medicine, vol. 359, no. 25, pp. 2720–2722, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Deng, G. A. Calin, C. M. Croce, G. Coukos, and L. Zhang, “Mechanisms of microRNA deregulation in human cancer,” Cell Cycle, vol. 7, no. 17, pp. 2643–2646, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. K. E. Resnick, H. Alder, J. P. Hagan, D. L. Richardson, C. M. Croce, and D. E. Cohn, “The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform,” Gynecologic Oncology, vol. 112, no. 1, pp. 55–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S.-L. Yu, H.-Y. Chen, G.-C. Chang et al., “MicroRNA signature predicts survival and relapse in lung cancer,” Cancer Cell, vol. 13, no. 1, pp. 48–57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Torrisani, B. Bournet, M. C. Du Rieu et al., “Let-7 microRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression,” Human Gene Therapy, vol. 20, no. 8, pp. 831–844, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Zhang, M. Li, H. Wang et al., “Profiling of 95 MicroRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis,” World Journal of Surgery, vol. 33, no. 4, pp. 698–709, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Volinia, G. A. Calin, C. G. Liu et al., “A microRNA expression signature of human solid tumors defines cancer gene targets,” Proceeding of the National Academy of Sciences of the USA, vol. 103, no. 7, pp. 2257–2261, 2006. View at Publisher · View at Google Scholar
  14. T. Moriyama, K. Ohuchida, K. Mizumoto et al., “MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance,” Molecular Cancer Therapeutics, vol. 8, no. 5, pp. 1067–1074, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Ma, S. Yu, W. Zhao, Z. Lu, and J. Chen, “MiR-27 a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting Sprouty2,” Cancer Letters, vol. 298, no. 2, pp. 150–158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Kong, Y. Du, G. Wang et al., “Detection of differentially expressed microRNAs in serum of pancreatic ductal adenocarcinoma patients: miR-196a could be a potential marker for poor prognosis,” Digestive Diseases and Sciences, vol. 56, no. 2, pp. 602–609, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Park, J. C. Henry, J. Jiang et al., “MiR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor,” Biochemical and Biophysical Research Communications, vol. 406, no. 4, pp. 518–523, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Gironella, M. Seux, M. Xie et al., “Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 41, pp. 16170–16175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Li, N. Omura, S. M. Hong et al., “Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels,” Cancer Research, vol. 70, no. 13, pp. 5226–5237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. F. U. Weiss, I. J. Marques, J. M. Woltering et al., “Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer,” Gastroenterology, vol. 137, no. 6, pp. 2136–2145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. H. Zhu, C. Y. Zhao, M. Shi et al., “Pancreatic cancer specific microRNA as serological markers, Chinese Medical Association branch pathology,” in Academic Conference Proceedings, pp. 128–213, 2010.
  22. S. T. Mees, W. A. Mardin, C. Wendel et al., “EP300—a miRNA-regulated metastasis suppressor gene in ductal adenocarcinomas of the pancreas,” International Journal of Cancer, vol. 126, no. 1, pp. 114–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Chen, L. Chen, P. Wang, H. Dai, S. Gao, and K. Wang, “Tumor microenvironment varies under different TCM ZHENG models and correlates with treatment response to herbal medicine,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 635702, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Lee and D. T. Wong, “Saliva: an emerging biofluid for early detection of diseases,” The American Journal of Dentistry, vol. 22, no. 4, pp. 241–248, 2009. View at Google Scholar · View at Scopus
  25. C. S. Lau and D. T. W. Wong, “Breast cancer exosome-like microvesicles and salivary gland cells interplay alters salivary gland cell-derived exosome-like microvesicles in vitro,” PLoS ONE, vol. 7, no. 3, Article ID e33037, 9 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Denny, F. K. Hagen, M. Hardt et al., “The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions,” Journal of Proteome Research, vol. 7, no. 5, pp. 1994–2006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. N. J. Park, H. Zhou, D. Elashoff et al., “Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection,” Clinical Cancer Research, vol. 15, no. 17, pp. 5473–5477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. C.-J. Liu, S.-Y. Kao, H.-F. Tu, M.-M. Tsai, K.-W. Chang, and S.-C. Lin, “Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer,” Oral Diseases, vol. 16, no. 4, pp. 360–364, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Michael, S. D. Bajracharya, P. S. T. Yuen et al., “Exosomes from human saliva as a source of microRNA biomarkers,” Oral Diseases, vol. 16, no. 1, pp. 34–38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Yanaihara, N. Caplen, E. Bowman et al., “Unique microRNA molecular profiles in lung cancer diagnosis and prognosis,” Cancer Cell, vol. 9, no. 3, pp. 189–198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Gao, Y. Yu, H. Cao et al., “Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis,” Biomedicine and Pharmacotherapy, vol. 64, no. 6, pp. 399–408, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. H. J. Yan, W. S. Liu, W. H. Sun et al., “MiR-17-5p inhibitor enhances chemosensitivity to gemcitabine via upregulating Bim expression in pancreatic cancer cells,” Digestive Diseases and Sciences, vol. 57, no. 12, pp. 3160–3167, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Que, G. Ding, J. Chen, and L. Cao, “Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma,” World Journal of Surgical Oncology, vol. 11, article 219, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. M. C. Du Rieu, J. Torrisani, J. Selves et al., “MicroRNA-21 is induced early in pancreatic ductal adenocarcinoma precursor lesions,” Clinical Chemistry, vol. 56, no. 4, pp. 603–612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. V. S. Nair, L. S. Maeda, and J. P. A. Ioannidis, “Clinical outcome prediction by microRNAs in human cancer: a systematic review,” Journal of the National Cancer Institute, vol. 104, no. 7, pp. 528–540, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. N. C. Panarelli, Y. T. Chen, X. K. Zhou, N. Kitabayashi, and R. K. Yantiss, “MicroRNA expression aids the preoperative diagnosis of pancreatic ductal adenocarcinoma,” Pancreas, vol. 41, no. 5, pp. 685–690, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Takiuchi, H. Eguchi, H. Nagano et al., “Involvement of microRNA-181b in the gemcitabine resistance of pancreatic cancer cells,” Pancreatology, vol. 13, no. 5, pp. 517–523, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Shi, Z. Cheng, J. Zhang et al., “hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells,” Brain Research, vol. 1236, pp. 185–193, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Bottoni, M. C. Zatelli, M. Ferrcin et al., “Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas,” Journal of Cellular Physiology, vol. 210, no. 2, pp. 370–377, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Visone, L. Z. Rassenti, A. Veronese et al., “Karyotype-specific microRNA signature in chronic lymphocytic leukemia,” Blood, vol. 114, no. 18, pp. 3872–3879, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. I. Naguibneva, M. Ameyar-Zazoua, A. Polesskaya et al., “The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation,” Nature Cell Biology, vol. 8, no. 3, pp. 278–284, 2006. View at Publisher · View at Google Scholar · View at Scopus