Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 764268, 9 pages
http://dx.doi.org/10.1155/2014/764268
Research Article

Alterations in Red Blood Cell Deformability during Storage: A Microfluidic Approach

1Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
2Department of Physical Organic Chemistry, Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
3Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Reinier Postlaan 4, 6525 CG Nijmegen, The Netherlands

Received 5 June 2014; Accepted 15 August 2014; Published 10 September 2014

Academic Editor: Ulrich Salzer

Copyright © 2014 Judith C. A. Cluitmans et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Gregory and S. J. Hayflick, “Neurodegeneration with brain iron accumulation,” Folia Neuropathologica, vol. 43, no. 4, pp. 286–296, 2005. View at Google Scholar · View at Scopus
  2. R. Skalak and P.-I. Branemark, “Deformation of red blood cells in capillaries,” Science, vol. 164, no. 3880, pp. 717–719, 1969. View at Publisher · View at Google Scholar · View at Scopus
  3. F. C. Mokken, M. Kedaria, C. P. Henny, M. R. Hardeman, and A. W. Gelb, “The clinical importance of erythrocyte deformability, a hemorrheological parameter,” Annals of Hematology, vol. 64, no. 3, pp. 113–122, 1992. View at Publisher · View at Google Scholar · View at Scopus
  4. J. R. Hess, “Red cell changes during storage,” Transfusion and Apheresis Science, vol. 43, no. 1, pp. 51–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Luten, B. Roerdinkholder-Stoelwinder, N. P. M. Schaap, W. J. de Grip, H. J. Bos, and G. J. C. G. M. Bosman, “Survival of red blood cells after transfusion: a comparison between red cells concentrates of different storage periods,” Transfusion, vol. 48, no. 7, pp. 1478–1485, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. M. Frank, B. Abazyan, M. Ono et al., “Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration,” Anesthesia & Analgesia, vol. 116, no. 5, pp. 975–981, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. J. C. A. Cluitmans, M. R. Hardeman, S. Dinkla, R. Brock, and G. J. C. G. M. Bosman, “Red blood cell deformability during storage: towards functional proteomics and metabolomics in the Blood Bank,” Blood Transfusion, vol. 10, supplement 2, pp. s12–18, 2012. View at Google Scholar · View at Scopus
  8. D. Z. de Back, E. B. Kostova, M. van Kraaij, T. K. van den Berg, and R. van Bruggen, “Of macrophages and red blood cells; a complex love story,” Frontiers in Physiology, vol. 5, article 9, 2014. View at Google Scholar
  9. P. Caprari, A. Tarzia, G. Mojoli, P. Cianciulli, E. Mannella, and M. C. Martorana, “Hereditary spherocytosis and elliptocytosis associated with prosthetic heart valve replacement: rheological study of erythrocyte modifications,” International Journal of Hematology, vol. 89, no. 3, pp. 285–293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. G. Moutzouri, G. A. Athanassiou, D. Dimitropoulou, A. T. Skoutelis, and C. A. Gogos, “Severe sepsis and diabetes mellitus have additive effects on red blood cell deformability,” Journal of Infection, vol. 57, no. 2, pp. 147–151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Mohandas and E. Evans, “Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects,” Annual Review of Biophysics and Biomolecular Structure, vol. 23, pp. 787–818, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Musielak, “Red blood cell-deformability measurement: review of techniques,” Clinical Hemorheology and Microcirculation, vol. 42, no. 1, pp. 47–64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Almac and C. Ince, “The impact of storage on red cell function in blood transfusion,” Best Practice and Research: Clinical Anaesthesiology, vol. 21, no. 2, pp. 195–208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Henkelman, M. J. Dijkstra-Tiekstra, J. de Wildt-Eggen, R. Graaff, G. Rakhorst, and W. van Oeveren, “Is red blood cell rheology preserved during routine blood bank storage?” Transfusion, vol. 50, no. 4, pp. 941–948, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. R. Hardeman and C. Ince, “Clinical potential of in vitro measured red cell deformability, a myth?” Clinical Hemorheology and Microcirculation, vol. 21, no. 3-4, pp. 277–284, 1999. View at Google Scholar · View at Scopus
  16. L. Lanotte, G. Tomaiuolo, C. Misbah, L. Bureau, and S. Guido, “Red blood cell dynamics in polymer brush-coated microcapillaries: a model of endothelial glycocalyx in vitro,” Biomicrofluidics, vol. 8, no. 1, Article ID 014104, 2014. View at Publisher · View at Google Scholar
  17. G. Tomaiuolo, D. Rossi, S. Caserta, M. Cesarelli, and S. Guido, “Comparison of two flow-based imaging methods to measure individual red blood cell area and volume,” Cytometry Part A, vol. 81, no. 12, pp. 1040–1047, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Tomaiuolo and S. Guido, “Start-up shape dynamics of red blood cells in microcapillary flow,” Microvascular Research, vol. 82, no. 1, pp. 35–41, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Tomaiuolo, M. Barra, V. Preziosi, A. Cassinese, B. Rotoli, and S. Guido, “Microfluidics analysis of red blood cell membrane viscoelasticity,” Lab on a Chip, vol. 11, no. 3, pp. 449–454, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Ye, H. Li, and K. Y. Lam, “Modeling and simulation of microfluid effects on deformation behavior of a red blood cell in a capillary,” Microvascular Research, vol. 80, no. 3, pp. 453–463, 2010. View at Publisher · View at Google Scholar
  21. S. Braunmüller, L. Schmid, and T. Franke, “Dynamics of red blood cells and vesicles in microchannels of oscillating width,” Journal of Physics Condensed Matter, vol. 23, no. 18, Article ID 184116, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. F. H. Bosch, J. M. Werre, B. Roerdinkholder-Stoelwinder, T. H. Huls, F. L. A. Willekens, and M. R. Halie, “Characteristics of red blood cell populations fractionated with a combination of counterflow centrifugation and Percoll separation,” Blood, vol. 79, no. 1, pp. 254–260, 1992. View at Google Scholar · View at Scopus
  23. G. J. C. G. M. Bosman, J. C. A. Cluitmans, Y. A. M. Groenen, J. M. Werre, F. L. A. Willekens, and V. M. J. Novotnaý, “Susceptibility to hyperosmotic stress-induced phosphatidylserine exposure increases during red blood cell storage,” Transfusion, vol. 51, no. 5, pp. 1072–1078, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. N. Xia and G. M. Whitesides, “Soft lithography,” Angewandte Chemie, vol. 37, no. 5, pp. 550–575, 1998. View at Publisher · View at Google Scholar
  25. Y. Xia and G. M. Whitesides, “Soft lithography,” Annual Review of Materials Science, vol. 28, no. 1, pp. 153–184, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. J. R. Hess, R. L. Sparrow, P. F. van der Meer, J. P. Acker, R. A. Cardigan, and D. V. Devine, “Red blood cell hemolysis during blood bank storage: using national quality management data to answer basic scientific questions,” Transfusion, vol. 49, no. 12, pp. 2599–2603, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Dinkla, M. Peppelman, J. van der Raadt et al., “Phosphatidylserine exposure on stored red blood cells as a parameter for donor-dependent variation in product quality,” Blood Transfusion, vol. 12, no. 2, pp. 204–209, 2014. View at Publisher · View at Google Scholar
  28. B. Kaoui, G. Biros, and C. Misbah, “Why do red blood cells have asymmetric shapes even in a symmetric flow?” Physical Review Letters, vol. 103, no. 18, Article ID 188101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Y. M. Arabo, “Shear and extensional viscosities of hard wheat flour dough using a capillary rheometer,” Journal of Food Engineering, vol. 103, pp. 294–298, 2011. View at Google Scholar
  30. W.-M. Kulicke and C. Clasen, Viscosimetry of Polymers and Polyelectrolytes, Springer, London, UK, 2004.
  31. A. G. Koutsiaris, S. V. Tachmitzi, N. Batis et al., “Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo,” Biorheology, vol. 44, no. 5-6, pp. 375–386, 2007. View at Google Scholar · View at Scopus
  32. M. J. Rosenbluth, W. A. Lam, and D. A. Fletcher, “Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry,” Lab on a Chip, vol. 8, no. 7, pp. 1062–1070, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. F. A. Kuypers and K. de Jong, “The role of phosphatidylserine in recognition and removal of erythrocytes,” Cellular and Molecular Biology (Noisy-le-Grand, France), vol. 50, no. 2, pp. 147–158, 2004. View at Google Scholar · View at Scopus
  34. B. Blasi, A. D'Alessandro, N. Ramundo, and L. Zolla, “Red blood cell storage and cell morphology,” Transfusion Medicine, vol. 22, no. 2, pp. 90–96, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. S. S. Shevkoplyas, T. Yoshida, S. C. Gifford, and M. W. Bitensky, “Direct measurement of the impact of impaired erythrocyte deformability on microvascular network perfusion in a microfluidic device,” Lab on a Chip—Miniaturisation for Chemistry and Biology, vol. 6, no. 7, pp. 914–920, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Safeukui, P. A. Buffet, G. Deplaine et al., “Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen,” Blood, vol. 120, no. 2, pp. 424–430, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. T. L. Berezina, S. B. Zaets, C. Morgan et al., “Influence of storage on red blood cell rheological properties,” Journal of Surgical Research, vol. 102, no. 1, pp. 6–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Bennett-Guerrero, T. H. Veldman, A. Doctor et al., “Evolution of adverse changes in stored RBCs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 43, pp. 17063–17068, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Farges, R. Grebe, and M. Baumann, “Viscoelastic and biochemical properties of erythrocytes during storage with SAG-M at +4°C,” Clinical Hemorheology and Microcirculation, vol. 27, no. 1, pp. 1–11, 2002. View at Google Scholar · View at Scopus
  40. Y. Zheng, J. Chen, T. Cui et al., “Characterization of red blood cell deformability change during blood storage,” Lab Chip, vol. 14, pp. 577–583, 2014. View at Google Scholar
  41. G. J. Bosman, M. Stappers, and V. M. Novotny, “Changes in band 3 structure as determinants of erythrocyte integrity during storage and survival after transfusion,” Blood Transfusion, vol. 8, supplement 3, pp. s48–s52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. G. J. C. G. M. Bosman, J. M. Werre, F. L. A. Willekens, and V. M. J. Novotný, “Erythrocyte ageing in vivo and in vitro: structural aspects and implications for transfusion,” Transfusion Medicine, vol. 18, no. 6, pp. 335–347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Deplaine, I. Safeukui, F. Jeddi et al., “The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro,” Blood, vol. 117, no. 8, pp. e88–e95, 2011. View at Publisher · View at Google Scholar · View at Scopus