Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 764981, 10 pages
Research Article

Hepatic Stellate Cell Coculture Enables Sorafenib Resistance in Huh7 Cells through HGF/c-Met/Akt and Jak2/Stat3 Pathways

1Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
2Jiangsu Province’s Key Medical Center for Hepatobiliary Surgery, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
3School of Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
4Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China

Received 27 March 2014; Revised 28 May 2014; Accepted 4 June 2014; Published 25 June 2014

Academic Editor: Jian Zhou

Copyright © 2014 Weibo Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Purpose. Tumor microenvironment confers drug resistance to kinase inhibitors by increasing RKT ligand levels that result in the activation of cell-survival signaling including PI3K and MAPK signals. We assessed whether HSC-LX2 coculture conferred sorafenib resistance in Huh7 and revealed the mechanism underlying the drug resistance. Experimental Design. The effect of LX2 on sorafenib resistance was determined by coculture system with Huh7 cells. The rescue function of LX2 supernatants was assessed by MTT assay and fluorescence microscopy. The underlying mechanism was tested by administration of pathway inhibitors and manifested by Western blotting. Results. LX2 coculture significantly induced sorafenib resistance in Huh7 by activating p-Akt that led to reactivation of p-ERK. LX2 secreted HGF into the culture medium that triggered drug resistance, and exogenous HGF could also induce sorafenib resistance. The inhibition of p-Akt blocked sorafenib resistance caused by LX2 coculture. Increased phosphorylation of Jak2 and Stat3 was also detected in LX2 cocultured Huh7 cells. The Jak inhibitor tofacitinib reversed sorafenib resistance by blocking Jak2 and Stat3 activation. The combined administration of sorafenib and p-Stat3 inhibitor S3I-201 augmented induced apoptosis even in the presence of sorafenib resistance. Conclusions. HSC-LX2 coculture induced sorafenib resistance in Huh7 through multiple pathways: HGF/c-Met/Akt pathway and Jak2/Stat3 pathway. A combined administration of sorafenib and S3I-201 was able to augment sorafenib-induced apoptosis even in the presence of LX2 coculture.