Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 781863, 6 pages
http://dx.doi.org/10.1155/2014/781863
Research Article

Prolonged Sleep Deprivation and Continuous Exercise: Effects on Melatonin, Tympanic Temperature, and Cognitive Function

School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA

Received 28 February 2014; Revised 10 June 2014; Accepted 15 June 2014; Published 6 July 2014

Academic Editor: Edward J. Ryan

Copyright © 2014 Greggory R. Davis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. N. Caldwell, L. Engelen, C. van der Henst, M. J. Patterson, and N. A. S. Taylor, “The interaction of body armor, low-intensity exercise, and hot-humid conditions on physiological strain and cognitive function,” Military Medicine, vol. 176, no. 5, pp. 488–493, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Roberts and J. Cole, “The effects of exercise and body armor on cognitive function in healthy volunteers,” Military Medicine, vol. 178, no. 5, pp. 479–486, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. S. J. Lucas, J. G. Anson, C. D. Palmer, I. J. Hellemans, and J. D. Cotter, “The impact of 100 hours of exercise and sleep deprivation on cognitive function and physical capacities,” Journal of Sports Sciences, vol. 27, no. 7, pp. 719–728, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Scott, L. McNaughton, and R. Polman, “Effects of sleep deprivation and exercise on cognitive, motor performance and mood,” Physiology & Behavior, vol. 87, no. 2, pp. 396–408, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. D. Symons, T. van Helder, and W. S. Myles, “Physical performance and physiological responses following 60 hours of sleep deprivation,” Medicine and Science in Sports and Exercise, vol. 20, no. 4, pp. 374–380, 1988. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Caine-Bish, E. S. Potkanowicz, R. Otterstetter, J. Marcinkiewicz, G. Kamimori, and E. Glickman, “The effect of cold exposure on the hormonal and metabolic responses to sleep deprivation,” Wilderness and Environmental Medicine, vol. 16, no. 4, pp. 177–184, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. H. R. Lieberman, J. W. Castellani, and A. J. Young, “Cognitive function and mood during acute cold stress after extended military training and recovery,” Aviation Space and Environmental Medicine, vol. 80, no. 7, pp. 629–636, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Mäkinen, L. Palinkas, D. Reeves et al., “Effect of repeated exposures to cold on cognitive performance in humans,” Physiology and Behavior, vol. 87, no. 1, pp. 166–176, 2006. View at Publisher · View at Google Scholar
  9. M. B. Spitznagel, J. Updegraff, K. Pierce et al., “Cognitive function during acute cold exposure with or without sleep deprivation lasting 53 hours,” Aviation Space and Environmental Medicine, vol. 80, no. 8, pp. 703–708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Romeijn, I. Verweij, A. Koeleman et al., “Cold hands, warm feet: sleep deprivation disrupts thermoregulation and its association with vigilance,” Sleep, vol. 35, no. 12, pp. 1673–1683, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Savourey and J. Bittel, “Cold thermoregulatory changes induced by sleep deprivation in men,” European Journal of Applied Physiology and Occupational Physiology, vol. 69, no. 3, pp. 216–220, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. K. P. Wright Jr., J. T. Hull, and C. A. Czeisler, “Relationship between alertness, performance, and body temperature in humans,” American Journal of Physiology: Regulatory Integrative and Comparative Physiology, vol. 283, no. 6, pp. R1370–R1377, 2002. View at Google Scholar · View at Scopus
  13. M. Zhu, J. J. H. Ackerman, A. L. Sukstanskii, and D. A. Yablonskiy, “How the body controls brain temperature: the temperature shielding effect of cerebral blood flow,” Journal of Applied Physiology, vol. 101, no. 5, pp. 1481–1488, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Zhu, J. J. H. Ackerman, and D. A. Yablonskiy, “Body and brain temperature coupling: the critical role of cerebral blood flow,” Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, vol. 179, no. 6, pp. 701–710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Ackermann, R. Plomp, O. Lao et al., “Effect of sleep deprivation on rhythms of clock gene expression and melatonin in humans,” Chronobiology International, vol. 30, no. 7, pp. 901–909, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. P. G. Binks, W. F. Waters, and M. Hurry, “Short-term total sleep deprivations does not selectively impair higher cortical functioning,” Sleep, vol. 22, no. 3, pp. 328–334, 1999. View at Google Scholar · View at Scopus
  17. A. Dixit, A. Goyal, R. Thawani, and N. Vaney, “Psychomotor performance of medical students: effect of 24 hours of sleep deprivation,” Indian Journal of Psychological Medicine, vol. 34, no. 2, pp. 129–132, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Killgore, T. Balkin, and N. Wesensten, “Impaired decision making following 49 h of sleep deprivation,” Journal of Sleep Research, vol. 15, no. 1, pp. 7–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. D.-J. Kim, H.-P. Lee, Y.-J. Park et al., “The effect of total sleep deprivation on cognitive functions in normal adult male subjects,” International Journal of Neuroscience, vol. 109, no. 1-2, pp. 127–137, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Oken, M. Salinsky, and S. Elsas, “Vigilance, alertness, or sustained attention: physiological basis and measurement,” Clinical Neurophysiology, vol. 117, no. 9, pp. 1885–1901, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Ratcliff and H. van Dongen, “Sleep deprivation affects multiple distinct cognitive processes,” Psychonomic Bulletin and Review, vol. 16, no. 4, pp. 742–751, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. M. T. Wehrens, S. M. Hampton, M. Kerkhofs, and D. J. Skene, “Mood, alertness, and performance in response to sleep deprivation and recovery sleep in experienced shiftworkers versus non-shiftworkers,” Chronobiology International, vol. 29, no. 5, pp. 537–548, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Kalonia and A. Kumar, “Protective effect of melatonin on certain behavioral and biochemical alterations induced by sleep-deprivation in mice,” Indian Journal of Pharmacology, vol. 39, no. 1, pp. 48–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Basner and D. F. Dinges, “Maximizing sensitivity of the Psychomotor Vigilance Test (PVT) to sleep loss,” Sleep, vol. 34, no. 5, pp. 581–591, 2011. View at Google Scholar · View at Scopus
  25. D. F. Dinges, F. Pack, K. Williams et al., “Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night,” Sleep, vol. 20, no. 4, pp. 267–277, 1997. View at Google Scholar · View at Scopus
  26. H. J. Burgess, “Evening ambient light exposure can reduce circadian phase advances to morning light independent of sleep deprivation,” Journal of Sleep Research, vol. 22, no. 1, pp. 83–88, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Darwent, S. A. Ferguson, C. Sargent et al., “Contribution of core body temperature, prior wake time, and sleep stages to cognitive throughput performance during forced desynchrony,” Chronobiology International, vol. 27, no. 5, pp. 898–910, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Zeitzer, J. F. Duffy, S. W. Lockley, D. Dijk, and C. A. Czeisler, “Plasma melatonin rhythms in young and older humans during sleep, sleep deprivation, and wake,” Sleep, vol. 30, no. 11, pp. 1437–1443, 2007. View at Google Scholar · View at Scopus
  29. R. J. Salin-Pascual, H. Ortega-Soto, L. Huerto-Delgadillo, I. Camacho-Arroyo, G. Roldan-Roldan, and L. Tamarkin, “The effect of total sleep deprivation on plasma melatonin and cortisol in healthy human volunteers,” Sleep, vol. 11, no. 4, pp. 362–369, 1988. View at Google Scholar · View at Scopus
  30. T. Åkerstedt, J. E. Fröberg, Y. Friberg, and L. Wetterberg, “Melatonin excretion, body temperature and subjective arousal during 64 hours of sleep deprivation,” Psychoneuroendocrinology, vol. 4, no. 3, pp. 219–225, 1979. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Monteleone, M. Maj, M. Fusco, C. Orazzo, and D. Kemali, “Physical exercise at night blunts the nocturnal increase of plasma melatonin levels in healthy humans,” Life Sciences, vol. 47, no. 22, pp. 1989–1995, 1990. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Marrin, B. Drust, W. Gregson, and G. Atkinson, “A meta-analytic approach to quantify the dose-response relationship between melatonin and core temperature,” European Journal of Applied Physiology, vol. 113, no. 9, pp. 2323–2329, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Reid, C. van den Heuvel, and D. Dawson, “Day-time melatonin administration: effects on core temperature and sleep onset latency,” Journal of Sleep Research, vol. 5, no. 3, pp. 150–154, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Purssell, A. While, and B. Coomber, “Tympanic thermometry–normal temperature and reliability,” Paediatric nursing, vol. 21, no. 6, pp. 40–43, 2009. View at Google Scholar · View at Scopus