Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 787404, 17 pages
http://dx.doi.org/10.1155/2014/787404
Review Article

Multifunctional Role of ATM/Tel1 Kinase in Genome Stability: From the DNA Damage Response to Telomere Maintenance

1Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
2Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy

Received 20 March 2014; Revised 28 July 2014; Accepted 7 August 2014; Published 28 August 2014

Academic Editor: Manoor Prakash Hande

Copyright © 2014 Enea Gino Di Domenico et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. A. Zakian, “ATM-related genes: what do they tell us about functions of the human gene?” Cell, vol. 82, no. 5, pp. 685–687, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Shiloh, “ATM and related protein kinases: safeguarding genome integrity,” Nature Reviews Cancer, vol. 3, no. 3, pp. 155–168, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Lempiäinen and T. D. Halazonetis, “Emerging common themes in regulation of PIKKs and PI3Ks,” EMBO Journal, vol. 28, no. 20, pp. 3067–3073, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Bhatti, S. Kozlov, A. A. Farooqi, A. Naqi, M. Lavin, and K. K. Khanna, “ATM protein kinase: the linchpin of cellular defenses to stress,” Cellular and Molecular Life Sciences, vol. 68, no. 18, pp. 2977–3006, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Bosotti, A. Isacchi, and E. L. L. Sonnhammer, “FAT: a novel domain in PIK-related kinases,” Trends in Biochemical Sciences, vol. 25, no. 5, pp. 225–227, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Perry and N. Kleckner, “The ATRs, ATMs, and TORs are giant HEAT repeat proteins,” Cell, vol. 112, no. 2, pp. 151–155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Rotman and Y. Shiloh, “ATM: from gene to function,” Human Molecular Genetics, vol. 7, no. 10, pp. 1555–1563, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Swift, D. Morrell, E. Cromartie, A. R. Chamberlin, M. H. Skolnick, and D. T. Bishop, “The incidence and gene frequency of Ataxia-telangiectasia in the United States,” American Journal of Human Genetics, vol. 39, no. 5, pp. 573–583, 1986. View at Google Scholar · View at Scopus
  9. P. Concannon and R. A. Gatti, “Diversity of ATM gene mutations detected in patients with ataxia-telangiectasia,” Human Mutation, vol. 10, no. 2, pp. 100–107, 1997. View at Google Scholar
  10. N. D. Lakin, P. Weber, T. Stankovic, S. T. Rottinghaus, A. M. R. Taylor, and S. P. Jackson, “Analysis of the ATM protein in wild-type and ataxia telangiectasia cells,” Oncogene, vol. 13, no. 12, pp. 2707–2716, 1996. View at Google Scholar · View at Scopus
  11. M. F. Lavin and S. Kozlov, “ATM activation and DNA damage response,” Cell Cycle, vol. 6, no. 8, pp. 931–942, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. B. Kastan, “Our cells get stressed too! Implications for human disease,” Blood Cells, Molecules, and Diseases, vol. 39, no. 2, pp. 148–150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. R. B. Painter and B. R. Young, “Radiosensitivity in ataxia-telangiectasia: a new explanation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 12, pp. 7315–7317, 1980. View at Google Scholar · View at Scopus
  14. M. B. Kastan, Q. Zhan, W. S. El-Deiry et al., “A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia,” Cell, vol. 71, no. 4, pp. 587–597, 1992. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Rotman and Y. Shiloh, “ATM: a mediator of multiple responses to genotoxic stress,” Oncogene, vol. 18, no. 45, pp. 6135–6144, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Kühne, E. Riballo, N. Rief, K. Rothkamm, P. A. Jeggo, and M. Löbrich, “A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity,” Cancer Research, vol. 64, no. 2, pp. 500–508, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. T. K. Pandita, S. Pathak, and C. R. Geard, “Chromosome end associations, telomeres and telomerase activity in ataxia telangiectasia cells,” Cytogenetics and Cell Genetics, vol. 71, no. 1, pp. 86–93, 1995. View at Google Scholar · View at Scopus
  18. T. K. Pandita, E. J. Hall, T. K. Hei et al., “Chromosome end-to-end associations and telomerase activity during cancer progression in human cells after treatment with α-particles simulating radon progeny,” Oncogene, vol. 13, no. 7, pp. 1423–1430, 1996. View at Google Scholar · View at Scopus
  19. J. A. Metcalfe, J. Parkhill, L. Campbell et al., “Accelerated telomere shortening in ataxia telangiectasia,” Nature Genetics, vol. 13, no. 3, pp. 350–353, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. K.-K. Wong, R. S. Maser, R. M. Bachoo et al., “Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing,” Nature, vol. 421, no. 6923, pp. 643–648, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. A. J. Lustig and T. D. Petes, “Identification of yeast mutants with altered telomere structure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 5, pp. 1398–1402, 1986. View at Google Scholar · View at Scopus
  22. P. W. Greenwell, S. L. Kronmal, S. E. Porter, J. Gassenhuber, B. Obermaier, and T. D. Petes, “TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene,” Cell, vol. 82, no. 5, pp. 823–829, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. D. M. Morrow, D. A. Tagle, Y. Shiloh, F. S. Collins, and P. Hieter, “TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1,” Cell, vol. 82, no. 5, pp. 831–840, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. K. B. Ritchie, J. C. Mallory, and T. D. Petes, “Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae,” Molecular and Cellular Biology, vol. 19, no. 9, pp. 6065–6075, 1999. View at Google Scholar · View at Scopus
  25. M. Arnerić and J. Lingner, “Tel1 kinase and subtelomere-bound Tbf1 mediate preferential elongation of short telomeres by telomerase in yeast,” EMBO Reports, vol. 8, no. 11, pp. 1080–1085, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Gao, T. B. Toro, M. Paschini, B. Braunstein-Ballew, R. B. Cervantes, and V. Lundblad, “Telomerase recruitment in Saccharomyces cerevisiae is not dependent on Tel1-mediated phosphorylation of Cdc13,” Genetics, vol. 186, no. 4, pp. 1147–1159, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. B.-B. S. Zhou and S. J. Elledge, “The DNA damage response: putting checkpoints in perspective,” Nature, vol. 408, no. 6811, pp. 433–439, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Yang, Y. Yu, H. E. Hamrick, and P. J. Duerksen-Hughes, “ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses,” Carcinogenesis, vol. 24, no. 10, pp. 1571–1580, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. T. M. Gottlieb and S. P. Jackson, “The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen,” Cell, vol. 72, no. 1, pp. 131–142, 1993. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Weterings, N. S. Verkaik, H. T. Brüggenwirth, J. H. J. Hoeijmakers, and D. C. van Gent, “The role of DNA dependent protein kinase in synapsis of DNA ends,” Nucleic Acids Research, vol. 31, no. 24, pp. 7238–7246, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Spagnolo, A. Rivera-Calzada, L. H. Pearl, and O. Llorca, “Three-dimensional structure of the human DNA- PKcs /Ku70/ Ku80 complex assembled on DNA and its implications for DNA DSB repair,” Molecular Cell, vol. 22, no. 4, pp. 511–519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Chen, K. Trujillo, W. Ramos, P. Sung, and A. E. Tomkinson, “Promotion of Dnl4-Catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes,” Molecular Cell, vol. 8, no. 5, pp. 1105–1115, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Lammens, D. J. Bemeleit, C. Möckel et al., “The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair,” Cell, vol. 145, no. 1, pp. 54–66, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. T. A. Weinert, G. L. Kiser, and L. H. Hartwell, “Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair,” Genes and Development, vol. 8, no. 6, pp. 652–665, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Sanchez, B. A. Desany, W. J. Jones, Q. Liu, B. Wang, and S. J. Elledge, “Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways,” Science, vol. 271, no. 5247, pp. 357–360, 1996. View at Google Scholar · View at Scopus
  36. J. E. Vialard, C. S. Gilbert, C. M. Green, and N. F. Lowndes, “The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage,” The EMBO Journal, vol. 17, no. 19, pp. 5679–5688, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Mantiero, M. Clerici, G. Lucchini, and M. P. Longhese, “Dual role for Saccharomyces cerevisiae Tel1 in the checkpoint response to double-strand breaks,” The EMBO Reports, vol. 8, no. 4, pp. 380–387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. M. R. Lieber, “The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway,” Annual Review of Biochemistry, vol. 79, pp. 181–211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. W.-D. Heyer, K. T. Ehmsen, and J. Liu, “Regulation of homologous recombination in eukaryotes,” Annual Review of Genetics, vol. 44, pp. 113–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Nakada, K. Matsumoto, and K. Sugimoto, “ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism,” Genes and Development, vol. 17, no. 16, pp. 1957–1962, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Banin, L. Moyal, S.-Y. Shieh et al., “Enhanced phosphorylation of p53 by ATM in response to DNA damage,” Science, vol. 281, no. 5383, pp. 1674–1677, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. A. M. Friedel, B. L. Pike, and S. M. Gasser, “ATR/Mec1: coordinating fork stability and repair,” Current Opinion in Cell Biology, vol. 21, no. 2, pp. 237–244, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Jazayeri, J. Falck, C. Lukas et al., “ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks,” Nature Cell Biology, vol. 8, no. 1, pp. 37–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. S. P. Gotoff, E. Amirmokri, and E. J. Liebner, “Ataxia telangiectasia. Neoplasia, untoward response to x-irradiation, and tuberous sclerosis,” The American Journal of Diseases of Children, vol. 114, no. 6, pp. 617–625, 1967. View at Google Scholar · View at Scopus
  45. A. M. R. Taylor, D. G. Harnden, C. F. Arlett et al., “Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity,” Nature, vol. 258, no. 5534, pp. 427–429, 1975. View at Publisher · View at Google Scholar · View at Scopus
  46. C. J. Bakkenist and M. B. Kastan, “DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation,” Nature, vol. 421, no. 6922, pp. 499–506, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. J.-H. Lee and T. T. Paull, “Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex,” Science, vol. 304, no. 5667, pp. 93–96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Falck, J. Coates, and S. P. Jackson, “Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage,” Nature, vol. 434, no. 7033, pp. 605–611, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. Z. You, C. Chahwan, J. Bailis, T. Hunter, and P. Russell, “ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1,” Molecular and Cellular Biology, vol. 25, no. 13, pp. 5363–5379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. J.-H. Lee and T. T. Paull, “ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex,” Science, vol. 308, no. 5721, pp. 551–554, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Pellegrini, A. Celeste, S. Difilippantonio et al., “Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo,” Nature, vol. 443, no. 7108, pp. 222–225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. J. A. Daniel, M. Pellegrini, J.-H. Lee, T. T. Paull, L. Feigenbaum, and A. Nussenzweig, “Multiple autophosphorylation sites are dispensable for murine ATM activation in vivo,” Journal of Cell Biology, vol. 183, no. 5, pp. 777–783, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Yamamoto, Y. Wang, W. Jiang et al., “Kinase-dead ATM protein causes genomic instability and early embryonic lethality in mice,” The Journal of Cell Biology, vol. 198, no. 3, pp. 305–313, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. S. V. Kozlov, M. E. Graham, C. Peng, P. Chen, P. J. Robinson, and M. F. Lavin, “Involvement of novel autophosphorylation sites in ATM activation,” EMBO Journal, vol. 25, no. 15, pp. 3504–3514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Tian, Q. Yang, and Z. Mao, “Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death,” Nature Cell Biology, vol. 11, no. 2, pp. 211–218, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Sun, X. Jiang, S. Chen, N. Fernandes, and B. D. Price, “A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 37, pp. 13182–13187, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Sun, Y. Xu, K. Roy, and B. D. Price, “DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity,” Molecular and Cellular Biology, vol. 27, no. 24, pp. 8502–8509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. S. So, A. J. Davis, and D. J. Chen, “Autophosphorylation at serine 1981 stabilizes ATM at DNA damage sites,” Journal of Cell Biology, vol. 187, no. 7, pp. 977–990, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. Z. Guo, S. Kozlov, M. F. Lavin, M. D. Person, and T. T. Paull, “ATM activation by oxidative stress,” Science, vol. 330, no. 6003, pp. 517–521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. Z. Guo, R. Deshpande, and T. T. Paull, “ATM activation in the presence of oxidative stress,” Cell Cycle, vol. 9, no. 24, pp. 4805–4811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. O. K. Mirzoeva and J. H. J. Petrini, “DNA damage-dependent nuclear dynamics of the Mre11 complex,” Molecular and Cellular Biology, vol. 21, no. 1, pp. 281–288, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Lisby, J. H. Barlow, R. C. Burgess, and R. Rothstein, “Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins,” Cell, vol. 118, no. 6, pp. 699–713, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. E. Berkovich, R. J. Monnat Jr., and M. B. Kastan, “Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair,” Nature Cell Biology, vol. 9, no. 6, pp. 683–690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. E. P. Mimitou and L. S. Symington, “DNA end resection: many nucleases make light work,” DNA Repair, vol. 8, no. 9, pp. 983–995, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. A. V. Nimonkar, J. Genschel, E. Kinoshita et al., “BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair,” Genes and Development, vol. 25, no. 4, pp. 350–362, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Batchelor, A. Loewer, C. S. Mock, and G. Lahav, “Stimulus-dependent dynamics of p53 in single cells,” Molecular Systems Biology, vol. 7, article 488, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. A. K. Freeman and A. N. A. Monteiro, “Phosphatases in the cellular response to DNA damage,” Cell Communication and Signaling, vol. 8, article 27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. D. Chowdhury, M.-C. Keogh, H. Ishii, C. L. Peterson, S. Buratowski, and J. Lieberman, “γ-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair,” Molecular Cell, vol. 20, no. 5, pp. 801–809, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Lankoff, J. Bialczyk, D. Dziga et al., “The repair of gamma-radiation-induced DNA damage is inhibited by microcystin-LR, the PP1 and PP2A phosphatase inhibitor,” Mutagenesis, vol. 21, no. 1, pp. 83–90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Lu, J. S. Kovach, F. Johnson et al., “Inhibition of serine/threonine phosphatase PP2A enhances cancer chemotherapy by blocking DNA damage induced defense mechanisms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 34, pp. 11697–11702, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. P. Kalev, M. Simicek, I. Vazquez et al., “Loss of PPP2R2A inhibits homologous recombination DNA repair and predicts tumor sensitivity to PARP inhibition,” Cancer Research, vol. 72, no. 24, pp. 6414–6424, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Ali, J. Zhang, S. Bao et al., “Requirement of protein phosphatase 5 in DNA-damage-induced ATM activation,” Genes and Development, vol. 18, no. 3, pp. 249–254, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. A. A. Goodarzi and S. P. Lees-Miller, “Biochemical characterization of the ataxia-telangiectasia mutated (ATM) protein from human cells,” DNA Repair, vol. 3, no. 7, pp. 753–767, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Shreeram, O. N. Demidov, W. K. Hee et al., “Wip1 phosphatase modulates ATM-dependent signaling pathways,” Molecular Cell, vol. 23, no. 5, pp. 757–764, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, “DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139,” Journal of Biological Chemistry, vol. 273, no. 10, pp. 5858–5868, 1998. View at Publisher · View at Google Scholar · View at Scopus
  76. E. P. Rogakou, C. Boon, C. Redon, and W. M. Bonner, “Megabase chromatin domains involved in DNA double-strand breaks in vivo,” Journal of Cell Biology, vol. 146, no. 5, pp. 905–916, 1999. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Kruhlak, E. E. Crouch, M. Orlov et al., “The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks,” Nature, vol. 447, no. 7145, pp. 730–734, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Murga, I. Jaco, Y. Fan et al., “Global chromatin compaction limits the strength of the DNA damage response,” The Journal of Cell Biology, vol. 178, no. 7, pp. 1101–1108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. Y.-C. Kim, G. Gerlitz, T. Furusawa et al., “Activation of ATM depends on chromatin interactions occurring before induction of DNA damage,” Nature Cell Biology, vol. 11, no. 1, pp. 92–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Ziv, D. Bielopolski, Y. Galanty et al., “Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM-and KAP-1 dependent pathway,” Nature Cell Biology, vol. 8, no. 8, pp. 870–876, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. R. Kepkay, K. M. Attwood, Y. Ziv, Y. Shiloh, and G. Dellaire, “KAP1 depletion increases PML nuclear body number in concert with ultrastructural changes in chromatin,” Cell Cycle, vol. 10, no. 2, pp. 308–322, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. A. A. Goodarzi, A. T. Noon, and P. A. Jeggo, “The impact of heterochromatin on DSB repair,” Biochemical Society Transactions, vol. 37, no. 3, pp. 569–576, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Kumar and P. M. Burgers, “Lagging strand maturation factor Dna2 is a component of the replication checkpoint initiation machinery,” Genes and Development, vol. 27, no. 3, pp. 313–321, 2013. View at Publisher · View at Google Scholar · View at Scopus
  84. E. L. Ivanov, N. Sugawara, C. I. White, F. Fabre, and J. E. Haber, “Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae,” Molecular and Cellular Biology, vol. 14, no. 5, pp. 3414–3425, 1994. View at Google Scholar · View at Scopus
  85. E. P. Mimitou and L. S. Symington, “Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing,” Nature, vol. 455, no. 7214, pp. 770–774, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Gravel, J. R. Chapman, C. Magill, and S. P. Jackson, “DNA helicases Sgs1 and BLM promote DNA double-strand break resection,” Genes and Development, vol. 22, no. 20, pp. 2767–2772, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. B. M. Lengsfeld, A. J. Rattray, V. Bhaskara, R. Ghirlando, and T. T. Paull, “Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex,” Molecular Cell, vol. 28, no. 4, pp. 638–651, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. Z. Zhu, W.-H. Chung, E. Y. Shim, S. E. Lee, and G. Ira, “Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends,” Cell, vol. 134, no. 6, pp. 981–994, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Clerici, D. Mantiero, G. Lucchini, and M. P. Longhese, “The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling,” The EMBO Reports, vol. 7, no. 2, pp. 212–218, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. T. Usui, H. Ogawa, and J. H. J. Petrini, “A DNA damage response pathway controlled by Tel1 and the Mre11 complex,” Molecular Cell, vol. 7, no. 6, pp. 1255–1266, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. K. Fukunaga, Y. Kwon, P. Sung, and K. Sugimoto, “Activation of protein kinase tel1 through recognition of protein-bound DNA ends,” Molecular and Cellular Biology, vol. 31, no. 10, pp. 1959–1971, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. J.-H. Lee and T. T. Paull, “Activation and regulation of ATM kinase activity in response to DNA double-strand breaks,” Oncogene, vol. 26, no. 56, pp. 7741–7748, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Sabourin, C. T. Tuzon, and V. A. Zakian, “Telomerase and Tel1p preferentially associate with short telomeres in S. cerevisiae,” Molecular Cell, vol. 27, no. 4, pp. 550–561, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Matsuoka, B. A. Ballif, A. Smogorzewska et al., “ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage,” Science, vol. 316, no. 5828, pp. 1160–1166, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. R. Linding, L. J. Jensen, G. J. Ostheimer et al., “Systematic discovery of in vivo phosphorylation networks,” Cell, vol. 129, no. 7, pp. 1415–1426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. M. B. Smolka, C. P. Albuquerque, S.-H. Chen, and H. Zhou, “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 25, pp. 10364–10369, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. A. Bensimon, A. Schmidt, Y. Ziv et al., “ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage,” Science Signaling, vol. 3, no. 151, article rs3, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. S.-H. Chen, C. P. Albuquerque, J. Liang, R. T. Suhandynata, and H. Zhou, “A proteome-wide analysis of kinase-substrate network in the DNA damage response,” Journal of Biological Chemistry, vol. 285, no. 17, pp. 12803–12812, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. S. Choi, R. Srivas, K. Y. Fu et al., “Quantitative proteomics reveal ATM kinase-dependent exchange in DNA damage response complexes,” Journal of Proteome Research, vol. 11, no. 10, pp. 4983–4991, 2012. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Giannattasio, F. Lazzaro, W. Siede, E. Nunes, P. Plevani, and M. Muzi-Falconi, “DNA decay and limited Rad53 activation after liquid holding of UV-treated nucleotide excision repair deficient S. cerevisiae cells,” DNA Repair, vol. 3, no. 12, pp. 1591–1599, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Sabourin and V. A. Zakian, “ATM-like kinases and regulation of telomerase: lessons from yeast and mammals,” Trends in Cell Biology, vol. 18, no. 7, pp. 337–346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Pellicioli, C. Lucca, G. Liberi et al., “Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase,” EMBO Journal, vol. 18, no. 22, pp. 6561–6572, 1999. View at Publisher · View at Google Scholar · View at Scopus
  103. V. M. Navadgi-Patil and P. M. Burgers, “Cell-cycle-specific activators of the Mec1/ATR checkpoint kinase,” Biochemical Society Transactions, vol. 39, no. 2, pp. 600–605, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. J. Majka, S. K. Binz, M. S. Wold, and P. M. J. Burgers, “Replication protein A directs loading of the DNA damage checkpoint clamp to 5′-DNA junctions,” The Journal of Biological Chemistry, vol. 281, no. 38, pp. 27855–27861, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. K. Finn, N. F. Lowndes, and M. Grenon, “Eukaryotic DNA damage checkpoint activation in response to double-strand breaks,” Cellular and Molecular Life Sciences, vol. 69, no. 9, pp. 1447–1473, 2012. View at Publisher · View at Google Scholar · View at Scopus
  106. F. D. Sweeney, F. Yang, A. Chi, J. Shabanowitz, D. F. Hunt, and D. Durocher, “Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation,” Current Biology, vol. 15, no. 15, pp. 1364–1375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. J. A. Downs, M. C. Nussenzweig, and A. Nussenzweig, “Chromatin dynamics and the preservation of genetic information,” Nature, vol. 447, no. 7147, pp. 951–958, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. H. Van Attikum, O. Fritsch, B. Hohn, and S. M. Gasser, “Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair,” Cell, vol. 119, no. 6, pp. 777–788, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. R. Shroff, A. Arbel-Eden, D. Pilch et al., “Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break,” Current Biology, vol. 14, no. 19, pp. 1703–1711, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. G. Ira, A. Pellicioll, A. Balijja et al., “DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1,” Nature, vol. 431, no. 7011, pp. 1011–1017, 2004. View at Publisher · View at Google Scholar · View at Scopus
  111. J.-A. Kim, M. Kruhlak, F. Dotiwala, A. Nussenzweig, and J. E. Haber, “Heterochromatin is refractory to γ-H2AX modification in yeast and mammals,” Journal of Cell Biology, vol. 178, no. 2, pp. 209–218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. F. A. Derheimer and M. B. Kastan, “Multiple roles of ATM in monitoring and maintaining DNA integrity,” FEBS Letters, vol. 584, no. 17, pp. 3675–3681, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. V. Savic, B. Yin, N. L. Maas et al., “Formation of dynamic γ-H2AX domains along broken DNA strands is distinctly regulated by ATM and MDC1 and dependent upon H2AX densities in chromatin,” Molecular Cell, vol. 34, no. 3, pp. 298–310, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. B. Yin, B.-S. Lee, K. S. Yang-Iott, B. P. Sleckman, and C. H. Bassing, “Redundant and nonredundant functions of ATM and H2AX in αβ T-lineage lymphocytes,” Journal of Immunology, vol. 189, no. 3, pp. 1372–1379, 2012. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Stucki and S. P. Jackson, “γH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes,” DNA Repair, vol. 5, no. 5, pp. 534–543, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. K. Luo, J. Yuans, and Z. Lous, “Oligomerization of MDC1 protein is important for proper DNA damage response,” The Journal of Biological Chemistry, vol. 286, no. 32, pp. 28192–28199, 2011. View at Publisher · View at Google Scholar · View at Scopus
  117. M. S. Y. Huen, R. Grant, I. Manke et al., “RNF8 transduces the DNA damage signal via histone ubiquitylation and checkpoint protein assembly,” Cell, vol. 131, no. 5, pp. 901–914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. N. K. Kolas, J. R. Chapman, S. Nakada et al., “Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase,” Science, vol. 318, no. 5856, pp. 1637–1640, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. N. Mailand, S. Bekker-Jensen, H. Faustrup et al., “RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins,” Cell, vol. 131, no. 5, pp. 887–900, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. C. Doil, N. Mailand, S. Bekker-Jensen et al., “RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair protein,” Cell, vol. 136, no. 3, pp. 435–446, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. Y. Haupt, R. Maya, A. Kazaz, and M. Oren, “Mdm2 promotes the rapid degradation of p53,” Nature, vol. 387, no. 6630, pp. 296–299, 1997. View at Publisher · View at Google Scholar · View at Scopus
  122. D. Michael and M. Oren, “The p53-Mdm2 module and the ubiquitin system,” Seminars in Cancer Biology, vol. 13, no. 1, pp. 49–58, 2003. View at Publisher · View at Google Scholar · View at Scopus
  123. S.-Y. Shieh, J. Ahn, K. Tamai, Y. Taya, and C. Prives, “The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate, p53 at multiple DNA damage-inducible sites,” Genes & Development, vol. 14, no. 3, pp. 289–300, 2000. View at Google Scholar · View at Scopus
  124. C. Chao, D. Herr, J. Chun, and Y. Xu, “Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression,” EMBO Journal, vol. 25, no. 11, pp. 2615–2622, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. R. Maya, M. Balass, S.-T. Kim et al., “ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage,” Genes and Development, vol. 15, no. 9, pp. 1067–1077, 2001. View at Publisher · View at Google Scholar · View at Scopus
  126. J. Tang, T. Agrawal, Q. Cheng et al., “Phosphorylation of Daxx by ATM Contributes to DNA Damage-Induced p53 Activation,” PLoS ONE, vol. 8, no. 2, Article ID e55813, 2013. View at Publisher · View at Google Scholar · View at Scopus
  127. A. Hirao, Y. Y. Kong, S. Matsuoka et al., “DNA damage-induced activation of p53 by the checkpoint kinase Chk2,” Science, vol. 287, no. 5459, pp. 1824–1827, 2000. View at Publisher · View at Google Scholar · View at Scopus
  128. B. Vogelstein, D. Lane, and A. J. Levine, “Surfing the p53 network,” Nature, vol. 408, no. 6810, pp. 307–310, 2000. View at Publisher · View at Google Scholar · View at Scopus
  129. I. Neganova, F. Vilella, S. P. Atkinson et al., “An important role for CDK2 in G1 to S checkpoint activation and DNA damage response in human embryonic stem cells,” Stem Cells, vol. 29, no. 4, pp. 651–659, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. J. Falck, J. H. J. Petrini, B. R. Williams, J. Lukas, and J. Bartek, “The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways,” Nature Genetics, vol. 30, no. 3, pp. 290–294, 2002. View at Publisher · View at Google Scholar · View at Scopus
  131. B. Wang, S. Matsuoka, P. B. Carpenter, and S. J. Elledge, “53BP1, a mediator of the DNA damage checkpoint,” Science, vol. 298, no. 5597, pp. 1435–1438, 2002. View at Publisher · View at Google Scholar · View at Scopus
  132. S.-T. Kim, B. Xu, and M. B. Kastan, “Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage,” Genes and Development, vol. 16, no. 5, pp. 560–570, 2002. View at Publisher · View at Google Scholar · View at Scopus
  133. P. T. Yazdi, Y. Wang, S. Zhao, N. Patel, E. Y.-H. P. Lee, and J. Qin, “SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint,” Genes and Development, vol. 16, no. 5, pp. 571–582, 2002. View at Publisher · View at Google Scholar · View at Scopus
  134. R. Kitagawa, C. J. Bakkenist, P. J. McKinnon, and M. B. Kastan, “Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway,” Genes & Development, vol. 18, no. 12, pp. 1423–1438, 2004. View at Publisher · View at Google Scholar · View at Scopus
  135. H. Luo, Y. Li, J.-J. Mu et al., “Regulation of intra-S phase checkpoint by ionizing radiation (IR)-dependent and IR-independent phosphorylation of SMC3,” Journal of Biological Chemistry, vol. 283, no. 28, pp. 19176–19183, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. Y. Sanchez, J. Bachant, H. Wang et al., “Control of the DNA damage checkpoint by Chk1 and Rad53 protein kinases through distinct mechanisms,” Science, vol. 286, no. 5442, pp. 1166–1171, 1999. View at Publisher · View at Google Scholar · View at Scopus
  137. R. Garg, S. Callens, D.-S. Lim, C. E. Canman, M. B. Kastan, and B. Xu, “Chromatin association of Rad17 is required for an ataxia telangiectasia and Rad-related kinase-mediated S-phase checkpoint in response to low-dose ultraviolet radiation,” Molecular Cancer Research, vol. 2, no. 6, pp. 362–369, 2004. View at Google Scholar · View at Scopus
  138. C. W. Greider and E. H. Blackburn, “Identification of a specific telomere terminal transferase activity in tetrahymena extracts,” Cell, vol. 43, no. 2, pp. 405–413, 1985. View at Google Scholar · View at Scopus
  139. J. D. Watson, “Origin of concatemeric T7 DNA,” Nature: New biology, vol. 239, no. 94, pp. 197–201, 1972. View at Google Scholar · View at Scopus
  140. A. M. Olovnikov, “Principle of marginotomy in template synthesis of polynucleotides,” Doklady Akademii Nauk SSSR, vol. 201, no. 6, pp. 1496–1499, 1971. View at Google Scholar · View at Scopus
  141. M. Meyerson, C. M. Counter, E. N. Eaton et al., “hEST2, the putative human telomerase catalytic subunit gene, is up- regulated in tumor cells and during immortalization,” Cell, vol. 90, no. 4, pp. 785–795, 1997. View at Publisher · View at Google Scholar · View at Scopus
  142. S. B. Cohen, M. E. Graham, G. O. Lovrecz, N. Bache, P. J. Robinson, and R. R. Reddel, “Protein composition of catalytically active human telomerase from immortal cells,” Science, vol. 315, no. 5820, pp. 1850–1853, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. V. Lundblad and J. W. Szostak, “A mutant with a defect in telomere elongation leads to senescence in yeast,” Cell, vol. 57, no. 4, pp. 633–643, 1989. View at Publisher · View at Google Scholar · View at Scopus
  144. J. Prescott and E. H. Blackburn, “Functionally interacting telomerase RNAs in the yeast telomerase complex,” Genes and Development, vol. 11, no. 21, pp. 2790–2800, 1997. View at Publisher · View at Google Scholar · View at Scopus
  145. J. Lingner, T. R. Hughes, A. Shevchenko, M. Mann, V. Lundblad, and T. R. Cech, “Reverse transcriptase motifs in the catalytic subunit of telomerase,” Science, vol. 276, no. 5312, pp. 561–567, 1997. View at Publisher · View at Google Scholar · View at Scopus
  146. T. De Lange, “Telomere-related genome instability in cancer,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 70, pp. 197–204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  147. A. Sfeir, S. T. Kosiyatrakul, D. Hockemeyer et al., “Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication,” Cell, vol. 138, no. 1, pp. 90–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. A. Sfeir and T. De Lange, “Removal of shelterin reveals the telomere end-protection problem,” Science, vol. 336, no. 6081, pp. 593–597, 2012. View at Publisher · View at Google Scholar · View at Scopus
  149. J. D. Griffith, L. Comeau, S. Rosenfield et al., “Mammalian telomeres end in a large duplex loop,” Cell, vol. 97, no. 4, pp. 503–514, 1999. View at Publisher · View at Google Scholar · View at Scopus
  150. R. M. Stansel, T. de Lange, and J. D. Griffith, “T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang,” EMBO Journal, vol. 20, no. 19, pp. 5532–5540, 2001. View at Publisher · View at Google Scholar · View at Scopus
  151. T. K. Pandita, “ATM function and telomere stability,” Oncogene, vol. 21, no. 4, pp. 611–618, 2002. View at Publisher · View at Google Scholar · View at Scopus
  152. S. Marcand, V. Brevet, C. Mann, and E. Gilson, “Cell cycle restriction of telomere elongation,” Current Biology, vol. 10, no. 8, pp. 487–490, 2000. View at Publisher · View at Google Scholar · View at Scopus
  153. M. T. Hemann, M. A. Strong, L.-Y. Hao, and C. W. Greider, “The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability,” Cell, vol. 107, no. 1, pp. 67–77, 2001. View at Publisher · View at Google Scholar · View at Scopus
  154. M. T. Teixeira, M. Arneric, P. Sperisen, and J. Lingner, “Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states,” Cell, vol. 117, no. 3, pp. 323–335, 2004. View at Publisher · View at Google Scholar · View at Scopus
  155. D. Feldser, M. A. Strong, and C. W. Greider, “Ataxia telangiectasia mutated (Atm) is not required for telomerase-mediated elongation of short telomeres,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2249–2251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  156. M. L. DuBois, Z. W. Haimberger, M. W. McIntosh, and D. E. Gottschling, “A quantitative assay for telomere protection in Saccharomyces cerevisiae,” Genetics, vol. 161, no. 3, pp. 995–1013, 2002. View at Google Scholar · View at Scopus
  157. J. C. Mallory and T. D. Petes, “Protein kinase activity of Tel1p and Mec1p, two Saccharomyces cerevisiae proteins related to the human ATM protein kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13749–13754, 2000. View at Publisher · View at Google Scholar · View at Scopus
  158. Y. Ma and C. W. Greider, “Kinase-independent functions of TEL1 in telomere maintenance,” Molecular and Cellular Biology, vol. 29, no. 18, pp. 5193–5202, 2009. View at Publisher · View at Google Scholar · View at Scopus
  159. M. S. Singer and D. E. Gottschling, “TLC1: template RNA component of Saccharomyces cerevisiae telomerase,” Science, vol. 266, no. 5184, pp. 404–409, 1994. View at Publisher · View at Google Scholar · View at Scopus
  160. T. S. Lendvay, D. K. Morris, J. Sah, B. Balasubramanian, and V. Lundblad, “Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes,” Genetics, vol. 144, no. 4, pp. 1399–1412, 1996. View at Google Scholar · View at Scopus
  161. Y. Tsukamoto, A. K. P. Taggart, and V. A. Zakian, “The role of the Mre11-Rad50-Xrs2 complex in telomerase-mediated lengthening of Saccharomyces cerevisiae telomeres,” Current Biology, vol. 11, no. 17, pp. 1328–1335, 2001. View at Publisher · View at Google Scholar · View at Scopus
  162. S. W. L. Chan, J. Chang, J. Prescott, and E. H. Blackburn, “Altering telomere structure allows telomerase to act in yeast lacking ATM kinases,” Current Biology, vol. 11, no. 16, pp. 1240–1250, 2001. View at Publisher · View at Google Scholar · View at Scopus
  163. R. E. Hector, R. L. Shtofman, A. Ray et al., “Tel1p preferentially associates with short telomeres to stimulate their elongation,” Molecular Cell, vol. 27, no. 5, pp. 851–858, 2007. View at Publisher · View at Google Scholar · View at Scopus
  164. A. Bianchi and D. Shore, “Increased association of telomerase with short telomeres in yeast,” Genes and Development, vol. 21, no. 14, pp. 1726–1730, 2007. View at Publisher · View at Google Scholar · View at Scopus
  165. Y. Hirano, K. Fukunaga, and K. Sugimoto, “Rif1 and Rif2 inhibit localization of tel1 to DNA ends,” Molecular Cell, vol. 33, no. 3, pp. 312–322, 2009. View at Publisher · View at Google Scholar · View at Scopus
  166. E. G. Di Domenico, S. Mattarocci, G. Cimino-Reale et al., “Tel1 and Rad51 are involved in the maintenance of telomeres with capping deficiency,” Nucleic Acids Research, vol. 41, no. 13, pp. 6490–6500, 2013. View at Publisher · View at Google Scholar · View at Scopus
  167. F. Gallardo, N. Laterreur, E. Cusanelli et al., “Live cell imaging of telomerase RNA dynamics reveals cell cycle-dependent clustering of telomerase at elongating telomeres,” Molecular Cell, vol. 44, no. 5, pp. 819–827, 2011. View at Publisher · View at Google Scholar · View at Scopus
  168. J. S. McGee, J. A. Phillips, A. Chan, M. Sabourin, K. Paeschke, and V. A. Zakian, “Reduced Rif2 and lack of Mec1 target short telomeres for elongation rather than double-strand break repair,” Nature Structural and Molecular Biology, vol. 17, no. 12, pp. 1438–1445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  169. L. K. Goudsouzian, C. T. Tuzon, and V. A. Zakian, “S. cerevisiae Tel1p and Mre11p are required for normal levels of Est1p and Est2p telomere association,” Molecular Cell, vol. 24, no. 4, pp. 603–610, 2006. View at Publisher · View at Google Scholar · View at Scopus
  170. S.-F. Tseng, J.-J. Lin, and S.-C. Teng, “The telomerase-recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p-dependent phosphorylation,” Nucleic Acids Research, vol. 34, no. 21, pp. 6327–6336, 2006. View at Publisher · View at Google Scholar · View at Scopus
  171. G. Kyrion, K. A. Boakye, and A. J. Lustig, “C-terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in Saccharomvces cerevisiae,” Molecular and Cellular Biology, vol. 12, no. 11, pp. 5159–5173, 1992. View at Google Scholar · View at Scopus
  172. S. Marcand, E. Gilson, and D. Shore, “A protein-counting mechanism for telomere length regulation in yeast,” Science, vol. 275, no. 5302, pp. 986–990, 1997. View at Publisher · View at Google Scholar · View at Scopus
  173. D. Bonetti, M. Clerici, S. Anbalagan, M. Martina, G. Lucchini, and M. P. Longhese, “Shelterin-like proteins and Yku inhibit nucleolytic processing of Saccharomyces cerevisiae telomeres,” PLoS Genetics, vol. 6, no. 5, Article ID e1000966, 2010. View at Publisher · View at Google Scholar · View at Scopus
  174. K. A. Henning, N. Moskowitz, M. A. Ashlock, and P. P. Liu, “Humanizing the yeast telomerase template,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 10, pp. 5667–5671, 1998. View at Publisher · View at Google Scholar · View at Scopus
  175. M. K. Alexander and V. A. Zakian, “Rap1p telomere association is not required for mitotic stability of a C3TA2 telomere in yeast,” EMBO Journal, vol. 22, no. 7, pp. 1688–1696, 2003. View at Publisher · View at Google Scholar · View at Scopus
  176. E. G. di Domenico, C. Auriche, V. Viscardi, M. P. Longhese, E. Gilson, and F. Ascenzioni, “The Mec1p and Tel1p checkpoint kinases allow humanized yeast to tolerate chronic telomere dysfunctions by suppressing telomere fusions,” DNA Repair, vol. 8, no. 2, pp. 209–218, 2009. View at Publisher · View at Google Scholar · View at Scopus
  177. C. Auriche, E. G. Di Domenico, and F. Ascenzioni, “Budding yeast with human telomeres: a puzzling structure,” Biochimie, vol. 90, no. 1, pp. 108–115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  178. V. Ribaud, C. Ribeyre, P. Damay, and D. Shore, “DNA-end capping by the budding yeast transcription factor and subtelomeric binding protein Tbf1,” EMBO Journal, vol. 31, no. 1, pp. 138–149, 2012. View at Publisher · View at Google Scholar · View at Scopus
  179. K. B. Ritchie and T. D. Petes, “The Mre11p/Rad50p/Xrs2p complex and the Tellp function in a single pathway for telomere maintenance in yeast,” Genetics, vol. 155, no. 1, pp. 475–479, 2000. View at Google Scholar · View at Scopus
  180. S. Steinert, J. W. Shay, and W. E. Wright, “Transient expression of human telomerase extends the life span of normal human fibroblasts,” Biochemical and Biophysical Research Communications, vol. 273, no. 3, pp. 1095–1098, 2000. View at Publisher · View at Google Scholar · View at Scopus
  181. Y. Liu, H. Kha, M. Ungrin, M. O. Robinson, and L. Harrington, “Preferential maintenance of critically short telomeres in mammalian cells heterozygous for mTert,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 3597–3602, 2002. View at Publisher · View at Google Scholar · View at Scopus
  182. L. B. Smilenov, S. Dhar, and T. K. Pandita, “Altered telomere nuclear matrix interactions and nucleosomal periodicity in ataxia telangiectasia cells before and after ionizing radiation treatment,” Molecular and Cellular Biology, vol. 19, no. 10, pp. 6963–6971, 1999. View at Google Scholar · View at Scopus
  183. C. Barlow, S. Hirotsune, R. Paylor et al., “Atm-deficient mice: a paradigm of ataxia telangiectasia,” Cell, vol. 86, no. 1, pp. 159–171, 1996. View at Publisher · View at Google Scholar · View at Scopus
  184. L. Qi, M. A. Strong, B. O. Karim, M. Armanios, D. L. Huso, and C. W. Greider, “Short telomeres and ataxia-telangiectasia mutated deficiency cooperatively increase telomere dysfunction and suppress tumorigenesis,” Cancer Research, vol. 63, no. 23, pp. 8188–8196, 2003. View at Google Scholar · View at Scopus
  185. G. B. Celli and T. de Lange, “DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion,” Nature Cell Biology, vol. 7, no. 7, pp. 712–718, 2005. View at Publisher · View at Google Scholar · View at Scopus
  186. J. Karlseder, D. Broccoli, D. Yumin, S. Hardy, and T. de Lange, “p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2,” Science, vol. 283, no. 5406, pp. 1321–1325, 1999. View at Publisher · View at Google Scholar · View at Scopus
  187. J. Karlseder, K. Hoke, O. K. Mirzoeva et al., “The telomeric protein TRF2 binds the ATM Kinase and can inhibit the ATM-dependent DNA damage response,” PLoS Biology, vol. 2, no. 8, 2004. View at Publisher · View at Google Scholar · View at Scopus
  188. S. Kishi, X. Z. Zhou, Y. Ziv et al., “Telomeric protein Pin2/TRF1 as an important ATM target in response to double strand DNA breaks,” Journal of Biological Chemistry, vol. 276, no. 31, pp. 29282–29291, 2001. View at Publisher · View at Google Scholar · View at Scopus
  189. S. Kishi and K. P. Lu, “A critical role for Pin2/TRF1 in ATM-dependent regulation. Inhibition of Pin2/TRF1 function complements telomere shortening, radiosensitivity, and the G2/M checkpoint defect of ataxia-telangiectasia cells,” Journal of Biological Chemistry, vol. 277, no. 9, pp. 7420–7429, 2002. View at Publisher · View at Google Scholar · View at Scopus
  190. Y. Wu, S. Xiao, and X.-D. Zhu, “MRE11-RAD50-NBS1 and ATM function as co-mediators of TRF1 in telomere length control,” Nature Structural & Molecular Biology, vol. 14, no. 9, pp. 832–840, 2007. View at Publisher · View at Google Scholar · View at Scopus
  191. W. Chai, Q. Du, J. W. Shay, and W. E. Wright, “Human telomeres have different overhang sizes at leading versus lagging strands,” Molecular Cell, vol. 21, no. 3, pp. 427–435, 2006. View at Publisher · View at Google Scholar · View at Scopus
  192. Y. Bai and J. P. Murnane, “Telomere instability in a human tumor cell line expressing NBS1 with mutations at sites phosphorylated by ATM,” Molecular Cancer Research, vol. 1, no. 14, pp. 1058–1069, 2003. View at Google Scholar · View at Scopus
  193. X.-D. Zhu, B. Küster, M. Mann, J. H. J. Petrini, and T. de Lange, “Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres,” Nature Genetics, vol. 25, no. 3, pp. 347–352, 2000. View at Publisher · View at Google Scholar · View at Scopus
  194. G. S. Stewart, R. S. Maser, T. Stankovic et al., “The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder,” Cell, vol. 99, no. 6, pp. 577–587, 1999. View at Publisher · View at Google Scholar · View at Scopus
  195. K. Savitsky, A. Bau-Shira, S. Gilad et al., “A single ataxia telangiectasia gene with a product similar to Pl-3 kinase,” Science, vol. 268, no. 5218, pp. 1749–1753, 1995. View at Publisher · View at Google Scholar · View at Scopus
  196. I. R. Matei, C. J. Guidos, and J. S. Danska, “ATM-dependent DNA damage surveillance in T-cell development and leukemogenesis: the DSB connection,” Immunological Reviews, vol. 209, pp. 142–158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  197. Y. Xu, T. Ashley, E. E. Brainerd, R. T. Bronson, M. S. Meyn, and D. Baltimore, “Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma,” Genes and Development, vol. 10, no. 19, pp. 2411–2422, 1996. View at Publisher · View at Google Scholar · View at Scopus
  198. M. Swift, P. J. Reitnauer, D. Morrell, and C. L. Chase, “Breast and other cancers in families with ataxia-telangiectasia,” The New England Journal of Medicine, vol. 316, no. 21, pp. 1289–1294, 1987. View at Publisher · View at Google Scholar · View at Scopus
  199. M. G. FitzGerald, J. M. Bean, S. R. Hegde et al., “Heterozygous ATM mutations do not contribute to early onset of breast cancer,” Nature Genetics, vol. 15, no. 3, pp. 307–310, 1997. View at Publisher · View at Google Scholar · View at Scopus
  200. A. Broeks, J. H. M. Urbanus, A. N. Floore et al., “ATM-heterozygous germline mutations contribute to breast cancer-susceptibility,” The American Journal of Human Genetics, vol. 66, no. 2, pp. 494–500, 2000. View at Publisher · View at Google Scholar · View at Scopus
  201. S. S. Sommer, Z. Jiang, J. Feng et al., “ATM missense mutations are frequent inpatients with breast cancer,” Cancer Genetics and Cytogenetics, vol. 145, no. 2, pp. 115–120, 2003. View at Publisher · View at Google Scholar · View at Scopus
  202. A. Renwick, D. Thompson, S. Seal et al., “ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles,” Nature Genetics, vol. 38, no. 8, pp. 873–875, 2006. View at Publisher · View at Google Scholar · View at Scopus
  203. L. Izatt, C. Vessey, S. V. Hodgson, and E. Solomon, “Rapid and efficient ATM mutation detection by fluorescent chemical cleavage of mismatch: identification of four novel mutations,” European Journal of Human Genetics, vol. 7, no. 3, pp. 310–320, 1999. View at Publisher · View at Google Scholar · View at Scopus
  204. S. N. Teraoka, K. E. Malone, D. R. Doody et al., “Increased frequency of ATM mutations in breast carcinoma patients with early onset disease and positive family history,” Cancer, vol. 92, no. 3, pp. 479–487, 2001. View at Publisher · View at Google Scholar
  205. Y. R. Thorstenson, A. Roxas, R. Kroiss et al., “Contributions of ATM mutations to familial breast and ovarian cancer,” Cancer Research, vol. 63, no. 12, pp. 3325–3333, 2003. View at Google Scholar · View at Scopus
  206. O. Fletcher, N. Johnson, I. dos Santos Silva et al., “Missense variants in ATM in 26,101 breast cancer cases and 29,842 controls,” Cancer Epidemiology, Biomarkers and Prevention, vol. 19, no. 9, pp. 2143–2151, 2010. View at Google Scholar
  207. K. K. Khanna, “Cancer risk and the ATM gene: a continuing debate,” Journal of the National Cancer Institute, vol. 92, no. 10, pp. 795–802, 2000. View at Publisher · View at Google Scholar · View at Scopus
  208. M. F. Lavin and N. Gueven, “The complexity of p53 stabilization and activation,” Cell Death and Differentiation, vol. 13, no. 6, pp. 941–950, 2006. View at Publisher · View at Google Scholar · View at Scopus
  209. L. Zannini, G. Buscemi, J.-E. Kim, E. Fontanella, and D. Delia, “DBC1 phosphorylation by ATM/ATR inhibits SIRT1 deacetylase in response to DNA damage,” Journal of Molecular Cell Biology, vol. 4, no. 5, pp. 294–303, 2012. View at Publisher · View at Google Scholar · View at Scopus
  210. W. L. Lai, W. Y. Hung, and Y. P. Ching, “The tumor suppressor, TAX1BP2, is a novel substrate of ATM kinase,” Oncogene, 2013. View at Publisher · View at Google Scholar
  211. T. Stankovic, P. Weber, G. Stewart et al., “Inactivation of ataxia telanglectasia mutated gene in B-cell chronic lymphocytic leukaemia,” The Lancet, vol. 353, no. 9146, pp. 26–29, 1999. View at Publisher · View at Google Scholar · View at Scopus
  212. D. Stoppa-Lyonnet, J. Soulier, A. Laugé et al., “Inactivation of the ATM gene in T-cell prolymphocytic leukemias,” Blood, vol. 91, no. 10, pp. 3920–3926, 1998. View at Google Scholar · View at Scopus
  213. D. Thompson, S. Duedal, J. Kirner et al., “Cancer risks and mortality in heterozygous ATM mutation carriers,” Journal of the National Cancer Institute, vol. 97, no. 11, pp. 813–822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  214. L. L. Paglia, A. Laugé, J. Weber et al., “ATM germline mutations in women with familial breast cancer and a relative with haematological malignancy,” Breast Cancer Research and Treatment, vol. 119, no. 2, pp. 443–452, 2010. View at Publisher · View at Google Scholar · View at Scopus
  215. N. J. Roberts, Y. Jiao, J. Yu et al., “ATM mutations in patients with hereditary pancreatic cancer,” Cancer Discovery, vol. 2, no. 1, pp. 41–46, 2012. View at Publisher · View at Google Scholar · View at Scopus
  216. S. Bamford, E. Dawson, S. Forbes et al., “The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website,” British Journal of Cancer, vol. 91, no. 2, pp. 355–358, 2004. View at Google Scholar · View at Scopus
  217. M. Squatrito, C. W. Brennan, K. Helmy, J. T. Huse, J. H. Petrini, and E. C. Holland, “Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas,” Cancer Cell, vol. 18, no. 6, pp. 619–629, 2010. View at Publisher · View at Google Scholar · View at Scopus
  218. L. Ding, G. Getz, D. A. Wheeler et al., “Somatic mutations affect key pathways in lung adenocarcinoma,” Nature, vol. 455, no. 7216, pp. 1069–1075, 2008. View at Publisher · View at Google Scholar
  219. R. A. Gatti, A. Tward, and P. Concannon, “Cancer risk in ATM heterozygotes: a model of phenotypic and mechanistic differences between missense and truncating mutations,” Molecular Genetics and Metabolism, vol. 68, no. 4, pp. 419–423, 1999. View at Publisher · View at Google Scholar · View at Scopus
  220. T. Stankovic, A. M. J. Kidd, A. Sutcliffe et al., “ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer,” The American Journal of Human Genetics, vol. 62, no. 2, pp. 334–345, 1998. View at Publisher · View at Google Scholar · View at Scopus
  221. T. Stankovic, G. S. Stewart, P. Byrd, C. Fegan, P. A. H. Moss, and A. M. R. Taylor, “ATM mutations in sporadic lymphoid tumours,” Leukemia & Lymphoma, vol. 43, no. 8, pp. 1563–1571, 2002. View at Publisher · View at Google Scholar · View at Scopus
  222. M. Salimi, H. Mozdarani, and K. Majidzadeh, “Expression pattern of ATM and cyclin D1 in ductal carcinoma, normal adjacent and normal breast tissues of Iranian breast cancer patients,” Medical Oncology, vol. 29, no. 3, pp. 1502–1509, 2012. View at Publisher · View at Google Scholar · View at Scopus
  223. L. Song, C. Lin, Z. Wu et al., “miR-18a impairs DNA damage response through downregulation of ataxia telangiectasia mutated (ATM) kinase,” PLoS ONE, vol. 6, no. 9, Article ID e25454, 2011. View at Publisher · View at Google Scholar · View at Scopus
  224. H. Hu, L. Du, G. Nagabayashi, R. C. Seeger, and R. A. Gatti, “ATM is down-regulated by N-Myc-regulated microRNA-421,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 4, pp. 1506–1511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  225. W. Y. Mansour, N. V. Bogdanova, U. Kasten-Pisula et al., “Aberrant overexpression of miR-421 downregulates ATM and leads to a pronounced DSB repair defect and clinical hypersensitivity in SKX squamous cell carcinoma,” Radiotherapy and Oncology, vol. 106, no. 1, pp. 147–154, 2013. View at Publisher · View at Google Scholar · View at Scopus
  226. R. C. Bueno, R. A. Canevari, R. A. Villacis et al., “ATM down-regulation is associated with poor prognosis in sporadic breast carcinomas,” Annals of Oncology, vol. 25, no. 1, pp. 69–75, 2014. View at Google Scholar
  227. J. Prokopcova, Z. Kleibl, C. M. Banwell, and P. Pohlreich, “The role of ATM in breast cancer development,” Breast Cancer Research and Treatment, vol. 104, no. 2, pp. 121–128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  228. L. Luo, F.-M. Lu, S. Hart et al., “Ataxia-telangiectasia and T-cell leukemias: no evidence for somatic ATM mutation in sporadic T-ALL or for hypermethylation of the ATM-NPAT/E14 bidirectional promoter in T-PLL,” Cancer Research, vol. 58, no. 11, pp. 2293–2297, 1998. View at Google Scholar · View at Scopus
  229. S. Kovalev, A. Mateen, A. I. Zaika, B. J. O'Hea, and U. M. Moll, “Lack of defective expression of the ATM gene in sporadic breast cancer tissues and cell lines,” International Journal of Oncology, vol. 16, no. 4, pp. 825–831, 2000. View at Google Scholar · View at Scopus
  230. K. Mahajan, D. Coppola, B. Rawal et al., “Ack1-mediated androgen receptor phosphorylation modulates radiation resistance in castration-resistant prostate cancer,” The Journal of Biological Chemistry, vol. 287, no. 26, pp. 22112–22122, 2012. View at Publisher · View at Google Scholar · View at Scopus
  231. S. Ripka, A. Neesse, J. Riedel et al., “CUX1: target of Akt signalling and mediator of resistance to apoptosis in pancreatic cancer,” Gut, vol. 59, no. 8, pp. 1101–1110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  232. C. A. Cremona and A. Behrens, “ATM signalling and cancer,” Oncogene, vol. 33, no. 26, pp. 3351–3360, 2013. View at Publisher · View at Google Scholar · View at Scopus