Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 789765, 7 pages
http://dx.doi.org/10.1155/2014/789765
Research Article

Soluplus Graft Copolymer: Potential Novel Carrier Polymer in Electrospinning of Nanofibrous Drug Delivery Systems for Wound Therapy

1Department of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
2Immunology Group, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
3Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411 Tartu, Estonia

Received 11 November 2013; Revised 23 December 2013; Accepted 23 December 2013; Published 20 January 2014

Academic Editor: Nataša Škalko-Basnet

Copyright © 2014 Urve Paaver et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Electrospinning is an effective method in preparing polymeric nanofibrous drug delivery systems (DDSs) for topical wound healing and skin burn therapy applications. The aim of the present study was to investigate a new synthetic graft copolymer (Soluplus) as a hydrophilic carrier polymer in electrospinning of nanofibrous DDSs. Soluplus (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (PCL-PVAc-PEG)) was applied in the nonwoven nanomats loaded with piroxicam (PRX) as a poorly water-soluble drug. Raman spectroscopy, X-ray powder diffraction, differential scanning calorimetry, and scanning electron microscopy (SEM) were used in the physical characterization of nanofibrous DDSs. According to the SEM results, the drug-loaded PCL-PVAc-PEG nanofibers were circular in cross-section with an average diameter ranging from 500 nm up to 2 µm. Electrospinning stabilized the amorphous state of PRX. In addition, consistent and sustained-release profile was achieved with the present nanofibrous DDSs at the physiologically relevant temperature and pH applicable in wound healing therapy. In conclusion, electrospinning can be used to prepare nanofibrous DDSs of PCL-PVAc-PEG graft copolymer (Soluplus) and to stabilize the amorphous state of a poorly water-soluble PRX. The use of this synthetic graft copolymer can open new options to formulate nanofibrous DDSs for wound healing.