Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 796869, 7 pages
http://dx.doi.org/10.1155/2014/796869
Review Article

Heat Shock Protein 90 in Alzheimer’s Disease

1 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, No. 5 Donghai Middle Road, Qingdao 266071, China
2Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266003, China
3Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China

Received 5 February 2014; Revised 17 August 2014; Accepted 13 September 2014; Published 13 October 2014

Academic Editor: Raymond Chuen-Chung Chang

Copyright © 2014 Jiang-Rong Ou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Selkoe and D. Schenk, “Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics,” Annual Review of Pharmacology and Toxicology, vol. 43, pp. 545–584, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Paul and S. Mahanta, “Association of heat-shock proteins in various neurodegenerative disorders: is it a master key to open the therapeutic door?” Molecular and Cellular Biochemistry, vol. 386, no. 1-2, pp. 45–61, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. J. L. Johnson, “Evolution and function of diverse Hsp90 homologs and cochaperone proteins,” Biochimica et Biophysica Acta, vol. 1823, no. 3, pp. 607–613, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. J.-I. Kakimura, Y. Kitamura, K. Takata et al., “Microglial activation and amyloid-β clearance induced by exogenous heat-shock proteins,” The FASEB Journal, vol. 16, no. 6, pp. 601–603, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. C. A. Dickey, A. Kamal, K. Lundgren et al., “The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins,” The Journal of Clinical Investigation, vol. 117, no. 3, pp. 648–658, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Waza, H. Adachi, M. Katsuno et al., “17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration,” Nature Medicine, vol. 11, no. 10, pp. 1088–1095, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Thomas, J. M. Harrell, Y. Morishima, H. M. Peng, W. B. Pratt, and A. P. Lieberman, “Pharmacologic and genetic inhibition of hsp90-dependent trafficking reduces aggregation and promotes degradation of the expanded glutamine androgen receptor without stress protein induction,” Human Molecular Genetics, vol. 15, no. 11, pp. 1876–1883, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Waza, H. Adachi, M. Katsuno, M. Minamiyama, F. Tanaka, and G. Sobue, “Alleviating neurodegeneration by an anticancer agent: an Hsp90 inhibitor (17-AAG),” Annals of the New York Academy of Sciences, vol. 1086, pp. 21–34, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. F. R. Sharp, S. M. Massa, and R. A. Swanson, “Heat-shock protein protection,” Trends in Neurosciences, vol. 22, no. 3, pp. 97–99, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. Z.-S. Xu, Z.-Y. Li, Y. Chen, M. Chen, L.-C. Li, and Y.-Z. Ma, “Heat shock protein 90 in plants: molecular mechanisms and roles in stress responses,” International Journal of Molecular Sciences, vol. 13, no. 12, pp. 15706–15723, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Wegele, L. Müller, and J. Buchner, “Hsp70 and Hsp90—a relay team for protein folding,” Reviews of physiology, biochemistry and pharmacology, vol. 151, pp. 1–44, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Didenko, A. M. S. Duarte, G. E. Karagöz, and S. G. D. Rüdiger, “Hsp90 structure and function studied by NMR spectroscopy,” Biochimica et Biophysica Acta, vol. 1823, no. 3, pp. 636–647, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Li and J. Buchner, “Structure, function and regulation of the Hsp90 machinery,” Biomedical Journal, vol. 36, no. 3, pp. 106–117, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. M. M. U. Ali, S. Mark Roe, C. K. Vaughan et al., “Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex,” Nature, vol. 440, no. 7087, pp. 1013–1017, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Prodromou, S. M. Roe, R. O'Brien, J. E. Ladbury, P. W. Piper, and L. H. Pearl, “Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone,” Cell, vol. 90, no. 1, pp. 65–75, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. L. H. Pearl and C. Prodromou, “Structure and mechanism of the Hsp90 molecular chaperone machinery,” Annual Review of Biochemistry, vol. 75, pp. 271–294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Zhang, M. Botër, K. Li et al., “Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes,” The EMBO Journal, vol. 27, no. 20, pp. 2789–2798, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. K. Vaughan, U. Gohlke, F. Sobott et al., “Structure of an Hsp90-Cdc37-Cdk4 complex,” Molecular Cell, vol. 23, no. 5, pp. 697–707, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. J. Park, B. N. Borin, M. A. Martinez-Yamout, and H. J. Dyson, “The client protein p53 adopts a molten globule-like state in the presence of Hsp90,” Nature Structural and Molecular Biology, vol. 18, no. 5, pp. 537–541, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Hessling, K. Richter, and J. Buchner, “Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90,” Nature Structural and Molecular Biology, vol. 16, no. 3, pp. 287–293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Mickler, M. Hessling, C. Ratzke, J. Buchner, and T. Hugel, “The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis,” Nature Structural and Molecular Biology, vol. 16, no. 3, pp. 281–286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Meyer, C. Prodromou, B. Hu et al., “Structural and functional analysis of the middle segment of Hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions,” Molecular Cell, vol. 11, no. 3, pp. 647–658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. S. F. Harris, A. K. Shiau, and D. A. Agard, “The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site,” Structure, vol. 12, no. 6, pp. 1087–1097, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Hagn, S. Lagleder, M. Retzlaff et al., “Structural analysis of the interaction between Hsp90 and the tumor suppressor protein p53,” Nature Structural and Molecular Biology, vol. 18, no. 10, pp. 1086–1093, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Zhang, M. Windheim, S. M. Roe et al., “Chaperoned ubiquitylation: crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex,” Molecular Cell, vol. 20, no. 4, pp. 525–538, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Scheufler, A. Brinker, G. Bourenkov et al., “Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine,” Cell, vol. 101, no. 2, pp. 199–210, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Prodromou, B. Panaretou, S. Chohan et al., “The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the hi-terminal domains,” The EMBO Journal, vol. 19, no. 16, pp. 4383–4392, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Makhnevych and W. A. Houry, “The role of Hsp90 in protein complex assembly,” Biochimica et Biophysica Acta—Molecular Cell Research, vol. 1823, no. 3, pp. 674–682, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Samakovli, A. Thanou, C. Valmas, and P. Hatzopoulos, “Hsp90 canalizes developmental perturbation,” Journal of Experimental Botany, vol. 58, no. 13, pp. 3513–3524, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Specchia, L. Piacentini, P. Tritto et al., “Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons,” Nature, vol. 463, no. 7281, pp. 662–665, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Zuehlke and J. L. Johnson, “Hsp90 and co-chaperones twist the functions of diverse client proteins,” Biopolymers, vol. 93, no. 3, pp. 211–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. J. L. Johnson and C. Brown, “Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms,” Cell Stress and Chaperones, vol. 14, no. 1, pp. 83–94, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Taipale, D. F. Jarosz, and S. Lindquist, “HSP90 at the hub of protein homeostasis: emerging mechanistic insights,” Nature Reviews Molecular Cell Biology, vol. 11, no. 7, pp. 515–528, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Li, J. Soroka, and J. Buchner, “The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones,” Biochimica et Biophysica Acta—Molecular Cell Research, vol. 1823, no. 3, pp. 624–635, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. K. A. Krukenberg, T. O. Street, L. A. Lavery, and D. A. Agard, “Conformational dynamics of the molecular chaperone Hsp90,” Quarterly Reviews of Biophysics, vol. 44, no. 2, pp. 229–255, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. W. B. Pratt and D. O. Toft, “Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery,” Experimental Biology and Medicine, vol. 228, no. 2, pp. 111–133, 2003. View at Google Scholar · View at Scopus
  37. H. Adachi, M. Katsuno, M. Waza, M. Minamiyama, F. Tanaka, and G. Sobue, “Heat shock proteins in neurodegenerative diseases: pathogenic roles and therapeutic implications,” International Journal of Hyperthermia, vol. 25, no. 8, pp. 647–654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. A. J. McClellan, M. D. Scott, and J. Frydman, “Folding and quality control of the VHL tumor suppressor proceed through distinct chaperone pathways,” Cell, vol. 121, no. 5, pp. 739–748, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Koren III, U. K. Jinwal, D. C. Lee et al., “Chaperone signalling complexes in Alzheimer's disease,” Journal of Cellular and Molecular Medicine, vol. 13, no. 4, pp. 619–630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Paris, N. J. Ganey, V. Laporte et al., “Reduction of β-amyloid pathology by celastrol in a transgenic mouse model of Alzheimer's disease,” Journal of Neuroinflammation, vol. 7, article 17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Meyer-Luehmann, T. L. Spires-Jones, C. Prada et al., “Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease,” Nature, vol. 451, no. 7179, pp. 720–724, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Takata, Y. Kitamura, D. Tsuchiya, T. Kawasaki, T. Taniguchi, and S. Shimohama, “Heat shock protein-90-induced microglial clearance of exogenous amyloid-β1-42 in rat hippocampus in vivo,” Neuroscience Letters, vol. 344, no. 2, pp. 87–90, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. C. G. Evans, S. Wisén, and J. E. Gestwicki, “Heat shock proteins 70 and 90 inhibit early stages of amyloid β-(1-42) aggregation in vitro,” Journal of Biological Chemistry, vol. 281, no. 44, pp. 33182–33191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. L. B. Peterson and B. S. Blagg, “To fold or not to fold: modulation and consequences of Hsp90 inhibition,” Future Medicinal Chemistry, vol. 1, no. 2, pp. 267–283, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. W. Luo, F. Dou, A. Rodina et al., “Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 22, pp. 9511–9516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Goedert, “Tau protein and neurodegeneration,” Seminars in Cell and Developmental Biology, vol. 15, no. 1, pp. 45–49, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. E. M. Mandelkow, “Biochemistry and cell biology of tau protein in neurofibrillary degeneration,” Cold Spring Harbor Perspectives in Medicine, vol. 2, no. 7, Article ID a006247, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Takalo, A. Salminen, H. Soininen, M. Hiltunen, and A. Haapasalo, “Protein aggregation and degradation mechanisms in neurodegenerative diseases,” American Journal of Neurodegenerative Disease, vol. 2, no. 1, pp. 1–14, 2013. View at Google Scholar
  49. C. A. Dickey, J. Koren, Y.-J. Zhang et al., “Akt and CHIP coregulate tau degradation through coordinated interactions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 9, pp. 3622–3627, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. L.-F. Lau, J. B. Schachter, P. A. Seymour, and M. A. Sanner, “Tau protein phosphorylation as a therapeutic target in Alzheimer's disease,” Current Topics in Medicinal Chemistry, vol. 2, no. 4, pp. 395–415, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. W. Luo, W. Sun, T. Taldone, A. Rodina, and G. Chiosis, “Heat shock protein 90 in neurodegenerative diseases,” Molecular Neurodegeneration, vol. 5, no. 1, article 24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. S. K. Wandinger, K. Richter, and J. Buchner, “The Hsp90 chaperone machinery,” The Journal of Biological Chemistry, vol. 283, no. 27, pp. 18473–18477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Sahara, M. Murayama, T. Mizoroki et al., “In vivo evidence of CHIP up-regulation attenuating tau aggregation,” Journal of Neurochemistry, vol. 94, no. 5, pp. 1254–1263, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. C. A. Dickey, M. Yue, W.-L. Lin et al., “Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species,” Journal of Neuroscience, vol. 26, no. 26, pp. 6985–6996, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Garcia-Carbonero, A. Carnero, and L. Paz-Ares, “Inhibition of HSP90 molecular chaperones: moving into the clinic,” The Lancet Oncology, vol. 14, no. 9, pp. e358–e369, 2013. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Zhao, M. L. Michaelis, and B. S. J. Blagg, “Hsp90 modulation for the treatment of Alzheimer's disease,” Advances in Pharmacology, vol. 64, pp. 1–25, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. D. J. Selkoe, “Alzheimer disease: mechanistic understanding predicts novel therapies,” Annals of Internal Medicine, vol. 140, no. 8, pp. 627–238, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. F. Dou, L.-D. Yuan, and J.-J. Zhu, “Heat shock protein 90 indirectly regulates ERK activity by affecting Raf protein metabolism,” Acta Biochimica et Biophysica Sinica, vol. 37, no. 7, pp. 501–505, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. J. J. Pei, H. Braak, W. L. An et al., “Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer's disease,” Molecular Brain Research, vol. 109, no. 1-2, pp. 45–55, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Gezen-Ak, E. Dursun, H. Hanaǧasi et al., “BDNF, TNFα, HSP90, CFH, and IL-10 serum levels in patients with early or late onset Alzheimer's disease or mild cognitive impairment,” Journal of Alzheimer's Disease, vol. 37, no. 1, pp. 185–195, 2013. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Ansar, J. A. Burlison, M. K. Hadden et al., “A non-toxic Hsp90 inhibitor protects neurons from Aβ-induced toxicity,” Bioorganic and Medicinal Chemistry Letters, vol. 17, no. 7, pp. 1984–1990, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Yokota, M. Mishra, H. Akatsu et al., “Brain site-specific gene expression analysis in Alzheimer's disease patients,” European Journal of Clinical Investigation, vol. 36, no. 11, pp. 820–830, 2006. View at Publisher · View at Google Scholar · View at Scopus