Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 801918, 12 pages
http://dx.doi.org/10.1155/2014/801918
Research Article

Development of a Potential Probiotic Fresh Cheese Using Two Lactobacillus salivarius Strains Isolated from Human Milk

1Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense de Madrid, Ciudad Universitaria, Avenida Puerta de Hierro s/n, 28040 Madrid, Spain
2Probisearch, 28760 Tres Cantos, Spain
3Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Carretera de La Coruña, km. 7.5, 28040 Madrid, Spain

Received 28 February 2014; Revised 24 April 2014; Accepted 1 May 2014; Published 29 May 2014

Academic Editor: Clara G. de los Reyes-Gavilán

Copyright © 2014 Nivia Cárdenas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. R. Hill and P. Kethireddipalli, “Dairy products: cheese and yogurtin,” in Biochemistry of Foods, N. A. M. Eskin and F. Shahidi, Eds., pp. 319–362, Elsevier Science & Technology Books, San Diego, Calif, USA, 3rd edition, 2012. View at Google Scholar
  2. FAO/WHO, “Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria: report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria,” Technical Report, FAO/WHO, Geneva, Switzerland, 2001. View at Google Scholar
  3. M. Sharma and M. Devi, “Probiotics: a comprehensive approach toward health foods,” Critical Reviews in Food Science and Nutrition, vol. 54, no. 4, pp. 537–552, 2014. View at Publisher · View at Google Scholar
  4. M. E. Sanders and M. L. Marco, “Food formats for effective delivery of probiotics,” Annual Review of Food Science and Technology, vol. 1, pp. 65–85, 2010. View at Google Scholar · View at Scopus
  5. C. G. Vinderola, W. Prosello, D. Ghiberto, and J. A. Reinheimer, “Viability of probiotic (Bifidobacterium, Lactobacillus acidophilus and Lactobacillus casei) and nonprobiotic microflora in Argentinian Fresco cheese,” Journal of Dairy Science, vol. 83, no. 9, pp. 1905–1911, 2000. View at Google Scholar · View at Scopus
  6. E. W. Ng, M. Yeung, and P. S. Tong, “Effects of yogurt starter cultures on the survival of Lactobacillus acidophilus,” International Journal of Food Microbiology, vol. 145, no. 1, pp. 169–175, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Stanton, G. Gardiner, P. B. Lynch, J. K. Collins, G. Fitzgerald, and R. P. Ross, “Probiotic cheese,” International Dairy Journal, vol. 8, no. 5-6, pp. 491–496, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Martín, S. Langa, C. Reviriego et al., “Human milk is a source of lactic acid bacteria for the infant gut,” Journal of Pediatrics, vol. 143, no. 6, pp. 754–758, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. M. P. Heikkilä and P. E. J. Saris, “Inhibition of Staphylococcus aureus by the commensal bacteria of human milk,” Journal of Applied Microbiology, vol. 95, no. 3, pp. 471–478, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Martín, E. Jiménez, H. Heilig et al., “Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR,” Applied and Environmental Microbiology, vol. 75, no. 4, pp. 965–969, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Jost, C. Lacroix, C. Braegger, and C. Chassard, “Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches,” British Journal of Nutrition, vol. 110, no. 7, pp. 1253–1262, 2013. View at Publisher · View at Google Scholar
  12. V. Martín, A. Maldonado, L. Moles et al., “Sharing of bacterial strains between breast milk and infant feces,” Journal of Human Lactation, vol. 28, no. 1, pp. 36–44, 2012. View at Publisher · View at Google Scholar
  13. R. Martín, M. Olivares, M. L. Marín, L. Fernández, J. Xaus, and J. M. Rodríguez, “Probiotic potential of 3 lactobacilli strains isolated from breast milk,” Journal of Human Lactation, vol. 21, no. 1, pp. 8–17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Martín, E. Jiménez, M. Olivares et al., “Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother-child pair,” International Journal of Food Microbiology, vol. 112, no. 1, pp. 35–43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Olivares, M. P. Díaz-Ropero, R. Martín, J. M. Rodríguez, and J. Xaus, “Antimicrobial potential of four Lactobacillus strains isolated from breast milk,” Journal of Applied Microbiology, vol. 101, no. 1, pp. 72–79, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. P. Díaz-Ropero, R. Martín, S. Sierra et al., “Two Lactobacillus strains, isolated from breast milk, differently modulate the immune response,” Journal of Applied Microbiology, vol. 102, no. 2, pp. 337–343, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. F. J. Pérez-Cano, H. Dong, and P. Yaqoob, “In vitro immunomodulatory activity of Lactobacillus fermentum CECT5716 and Lactobacillus salivarius CECT5713: two probiotic strains isolated from human breast milk,” Immunobiology, vol. 215, no. 12, pp. 996–1004, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Jiménez, R. Martín, A. Maldonado et al., “Complete genome sequence of Lactobacillus salivarius CECT 5713, a probiotic strain isolated from human milk and infant feces,” Journal of Bacteriology, vol. 192, no. 19, pp. 5266–5267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Langa, A. Maldonado-Barragán, S. Delgado et al., “Characterization of Lactobacillus salivarius CECT 5713, a strain isolated from human milk: from genotype to phenotype,” Applied Microbiology and Biotechnology, vol. 94, no. 5, pp. 1279–1287, 2012. View at Google Scholar
  20. E. Jiménez, L. Fernández, A. Maldonado et al., “Oral Administration of Lactobacillus strains isolated from breast milk as an alternative for the treatment of infectious mastitis during lactation,” Applied and Environmental Microbiology, vol. 74, no. 15, pp. 4650–4655, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Lara-Villoslada, S. Sierra, M. P. Díaz-Ropero, M. Olivares, and J. Xaus, “Safety assessment of the human milk-isolated probiotic Lactobacillus salivarius CECT5713,” Journal of Dairy Science, vol. 90, no. 8, pp. 3583–3589, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Arroyo, V. Martín, A. Maldonado, E. Jiménez, L. Fernández, and J. M. Rodríguez, “Treatment of infectious mastitis during lactation: antibiotics versus oral administration of lactobacilli isolated from breast milk,” Clinical Infectious Diseases, vol. 50, no. 12, pp. 1551–1558, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Maldonado, F. Lara-Villoslada, S. Sierra et al., “Safety and tolerance of the human milk probiotic strain Lactobacillus salivarius CECT5713 in 6-month-old children,” Nutrition, vol. 26, no. 11-12, pp. 1082–1087, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. T. M. Cogan, M. Barbosa, E. Beuvier et al., “Characterization of the lactic acid bacteria in artisanal dairy products,” Journal of Dairy Research, vol. 64, no. 3, pp. 409–421, 1997. View at Google Scholar
  25. E. Rodríguez, J. Calzada, J. L. Arqués, J. M. Rodríguez, M. Nuñez, and M. Medina, “Antimicrobial activity of pediocin-producing Lactococcus lactis on Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157:H7 in cheese,” International Dairy Journal, vol. 15, no. 1, pp. 51–57, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Reviriego, L. Fernández, and J. M. Rodríguez, “A food-grade system for production of pediocin PA-1 in nisin-producing and non-nisin-producing Lactococcus lactis strains: application to inhibit Listeria growth in a cheese model system,” Journal of Food Protection, vol. 70, no. 11, pp. 2512–2517, 2007. View at Google Scholar · View at Scopus
  27. L. Ong, A. Henriksson, and N. P. Shah, “Proteolytic pattern and organic acid profiles of probiotic Cheddar cheese as influenced by probiotic strains of Lactobacillus acidophilus, Lb. paracasei, Lb. casei or Bifidobacterium sp,” International Dairy Journal, vol. 17, no. 1, pp. 67–78, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. L. Ruiz-Barba, A. Maldonado, and R. Jiménez-Díaz, “Small-scale total DNA extraction from bacteria and yeast for PCR applications,” Analytical Biochemistry, vol. 347, no. 2, pp. 333–335, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Moles, M. Gómez, H. Heilig et al., “Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life,” PLoS One, vol. 8, no. 6, Article ID e66986, 2013. View at Google Scholar
  30. U. Nübel, B. Engelen, A. Felske et al., “Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis,” Journal of Bacteriology, vol. 178, no. 19, pp. 5636–5643, 1996. View at Google Scholar
  31. H. G. Heilig, E. G. Zoetendal, E. E. Vaughan, P. Marteau, A. D. L. Akkermans, and W. M. De Vos, “Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA,” Applied and Environmental Microbiology, vol. 68, no. 1, pp. 114–123, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Martín, S. Delgado, A. Maldonado et al., “Isolation of lactobacilli from sow milk and evaluation of their probiotic potential,” Journal of Dairy Research, vol. 76, no. 4, pp. 418–425, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. J. H. Lee, R. Diono, G. Y. Kim, and D. B. Min, “Optimization of solid phase microextraction analysis for the headspace volatile compounds of Parmesan cheese,” Journal of Agricultural and Food Chemistry, vol. 51, no. 5, pp. 1136–1140, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. E. B. Roessler, R. M. Pangborn, J. L. Sidel, and H. Stone, “Expanded statistical tables for estimating significance in paired-preference, paired-difference, duo-trio and triangle tests,” Journal of Food Science, vol. 43, no. 3, pp. 940–943, 1978. View at Google Scholar
  35. A. Gomes da Cruz, F. C. A. Buriti, C. H. Batista de Souza, J. A. Fonseca Faria, and S. M. Isay Saad, “Probiotic cheese: health benefits, technological and stability aspects,” Trends in Food Science and Technology, vol. 20, no. 8, pp. 344–354, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Ong, A. Henriksson, and N. P. Shah, “Development of probiotic Cheddar cheese containing Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium spp. and the influence of these bacteria on proteolytic patterns and production of organic acid,” International Dairy Journal, vol. 16, no. 5, pp. 446–456, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. F. C. A. Buriti, J. S. Da Rocha, E. G. Assis, and S. M. I. Saad, “Probiotic potential of Minas fresh cheese prepared with the addition of Lactobacillus paracasei,” LWT-Food Science and Technology, vol. 38, no. 2, pp. 173–180, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. F. C. A. Buriti, J. S. Da Rocha, and S. M. I. Saad, “Incorporation of Lactobacillus acidophilus in Minas fresh cheese and its implications for textural and sensorial properties during storage,” International Dairy Journal, vol. 15, no. 12, pp. 1279–1288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Talwalkar, C. W. Miller, K. Kailasapathy, and M. H. Nguyen, “Effect of packaging materials and dissolved oxygen on the survival of probiotic bacteria in yoghurt,” International Journal of Food Science and Technology, vol. 39, no. 6, pp. 605–611, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. C. M. Bruhn, J. C. Bruhn, A. Cotter et al., “Consumer attitudes toward use of probiotic cultures,” Journal of Food Science, vol. 67, no. 5, pp. 1969–1972, 2002. View at Google Scholar · View at Scopus
  41. P. L. H. McSweeney, “Biochemistry of cheese ripening,” International Journal of Dairy Technology, vol. 57, no. 2-3, pp. 127–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. C. D. Everard, D. J. O'Callaghan, M. J. Mateo, C. P. O'Donnell, M. Castillo, and F. A. Payne, “Effects of cutting intensity and stirring speed on syneresis and curd losses during cheese manufacture,” Journal of Dairy Science, vol. 91, no. 7, pp. 2575–2582, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. D. B. Perry, D. J. McMahon, and C. J. Oberg, “Effect of exopolysaccharide-producing cultures on moisture retention in low-fat Mozzarella cheese,” Journal of Dairy Science, vol. 80, no. 5, pp. 799–805, 1997. View at Google Scholar
  44. D. Low, J. A. Ahlgren, D. Horne, D. J. McMahon, C. J. Oberg, and J. R. Broadbent, “Role of Streptococcus thermophilus MR-1C capsular exopolysaccharide in cheese moisture retention?” Applied and Environmental Microbiology, vol. 64, no. 6, pp. 2147–2151, 1998. View at Google Scholar · View at Scopus
  45. W. Wang, L. Zhang, and Y. Li, “Effect of specialized combined strains on reconstituted milk reduced-fat cheese,” African Journal of Biotechnology, vol. 11, no. 5, pp. 1169–1176, 2012. View at Google Scholar
  46. E. J. Raftis, E. Salvetti, S. Torriani, G. E. Felis, and P. W. O'Toole, “Genomic diversity of Lactobacillus salivarius,” Applied and Environmental Microbiology, vol. 77, no. 3, pp. 954–965, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. D. K. Hickey, T. P. Guinee, J. Hou, and M. G. Wilkinson, “Effects of variation in cheese composition and maturation on water activity in Cheddar cheese during ripening,” International Dairy Journal, vol. 30, no. 1, pp. 53–68, 2013. View at Publisher · View at Google Scholar
  48. R. Saurel, A. Pajonk, and J. Andrieu, “Modelling of french emmental cheese water activity during salting and ripening periods,” Journal of Food Engineering, vol. 63, no. 2, pp. 163–170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. C. H. B. De Souza, F. C. A. Buriti, J. H. Behrens, and S. M. I. Saad, “Sensory evaluation of probiotic Minas fresh cheese with Lactobacillus acidophilus added solely or in co-culture with a thermophilic starter culture,” International Journal of Food Science and Technology, vol. 43, no. 5, pp. 871–877, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. N. H. Ahmed, M. El Soda, A. N. Hassan, and J. Frank, “Improving the textural properties of an acid-coagulated (Karish) cheese using exopolysaccharide producing cultures,” LWT-Food Science and Technology, vol. 38, no. 8, pp. 843–847, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. M. B. Frøst and T. Janhøj, “Understanding creaminess,” International Dairy Journal, vol. 17, no. 11, pp. 1298–1311, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Smit, B. A. Smit, and W. J. M. Engels, “Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products,” FEMS Microbiology Reviews, vol. 29, no. 3, pp. 591–610, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. C. H. B. Souza and S. M. I. Saad, “Viability of Lactobacillus acidophilus La-5 added solely or in co-culture with a yoghurt starter culture and implications on physico-chemical and related properties of Minas fresh cheese during storage,” LWT-Food Science and Technology, vol. 42, no. 2, pp. 633–640, 2009. View at Publisher · View at Google Scholar · View at Scopus