Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 825017, 17 pages
http://dx.doi.org/10.1155/2014/825017
Review Article

Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review

1Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
2Leibniz Institute for Solid State and Materials Research Dresden, Postfatch 270116, 01171 Dresden, Germany

Received 22 April 2013; Revised 27 October 2013; Accepted 31 October 2013; Published 21 January 2014

Academic Editor: Christine Dufès

Copyright © 2014 Giuseppe Cirillo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. A. Hughes, “Nanostructure-mediated drug delivery,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 1, no. 1, pp. 22–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Cirillo, F. Iemma, F. Puoci et al., “Imprinted hydrophilic nanospheres as drug delivery systems for 5-fluorouracil sustained release,” Journal of Drug Targeting, vol. 17, no. 1, pp. 72–77, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. N. S. Satarkar, D. Biswal, and J. Z. Hilt, “Hydrogel nanocomposites: a review of applications as remote controlled biomaterials,” Soft Matter, vol. 6, no. 11, pp. 2364–2371, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. K. J. Morrow Jr., R. Bawa, and C. Wei, “Recent advances in basic and clinical nanomedicine,” Medical Clinics of North America, vol. 91, no. 5, pp. 805–843, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. C. A. Wan and J. Y. Ying, “Nanomaterials for in situ cell delivery and tissue regeneration,” Advanced Drug Delivery Reviews, vol. 62, no. 7-8, pp. 731–740, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Yang, X. Zhang, M. Ye et al., “Aptamer-conjugated nanomaterials and their applications,” Advanced Drug Delivery Reviews, vol. 63, no. 14-15, pp. 1361–1370, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Daum, C. Tscheka, A. Neumeyer, and M. Schneider, “Novel approaches for drug delivery systems in nanomedicine: effects of particle design and shape,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol. 4, no. 1, pp. 52–65, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Giri, M. Bhowmick, S. Pal, and A. Bandyopadhyay, “Polymer hydrogel from carboxymethyl guar gum and carbon nanotube for sustained trans-dermal release of diclofenac sodium,” International Journal of Biological Macromolecules, vol. 49, no. 5, pp. 885–893, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Singh and L. Pal, “Development of sterculia gum based wound dressings for use in drug delivery,” European Polymer Journal, vol. 44, no. 10, pp. 3222–3230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Sorbara, L. Jones, and D. Williams-Lyn, “Contact lens induced papillary conjunctivitis with silicone hydrogel lenses,” Contact Lens and Anterior Eye, vol. 32, no. 2, pp. 93–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Wu, W. Wei, L.-Y. Wang, Z.-G. Su, and G.-H. Ma, “A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system,” Biomaterials, vol. 28, no. 13, pp. 2220–2232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Samchenko, Z. Ulberg, and O. Korotych, “Multipurpose smart hydrogel systems,” Advances in Colloid and Interface Science, vol. 168, no. 1-2, pp. 247–262, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Kost and R. Langer, “Responsive polymeric delivery systems,” Advanced Drug Delivery Reviews, vol. 46, no. 1–3, pp. 125–148, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Zhang, J. Zhao, J. Zhu, C. He, and H. Wang, “Anisotropic tough poly(vinyl alcohol) hydrogels,” Soft Matter, vol. 8, no. 40, pp. 10439–10447, 2012. View at Google Scholar
  15. H. He, L. Li, and L. J. Lee, “Photopolymerization and structure formation of methacrylic acid based hydrogels: the effect of light intensity,” Reactive and Functional Polymers, vol. 68, no. 1, pp. 103–113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Zhu, Z. Shi, J. Jin, G. Li, and J. Jiang, “Synthesis and properties of polyacrylamide-based conducting gels with enhanced mechanical strength,” Journal of Macromolecular Science B, vol. 51, no. 11, pp. 2183–2190, 2012. View at Google Scholar
  17. S. Samanta, S. Das, R. Layek, D. Chatterjee, and A. Nandi, “Polythiophene-g-poly(dimethylaminoethyl methacrylate) doped methyl cellulose hydrogel behaving like a polymeric AND logic gate,” Soft Matter, vol. 8, no. 22, pp. 6066–6072, 2012. View at Google Scholar
  18. P. Li, X. Dou, Y. Tang et al., “Gelator-polysaccharide hybrid hydrogel for selective and controllable dye release,” Journal of Colloid and Interface Science, vol. 387, no. 1, pp. 115–122, 2012. View at Google Scholar
  19. D. Della Rocca, B. Willenberg, L. Ferreira et al., “A degradable, bioactive, gelatinized alginate hydrogel to improve stem cell/growth factor delivery and facilitate healing after myocardial infarction,” Medical Hypotheses, vol. 79, no. 5, pp. 673–677, 2012. View at Google Scholar
  20. D. T. Bobokalonov, Z. K. Mukhidinov, I. F. Rakhimov, F. M. Khodzhaeva, G. F. Kasymova, and L. S. Liu, “Piroxicam ex vivo release kinetics from zein/pectin delivery systems,” Pharmaceutical Chemistry Journal, vol. 46, no. 6, pp. 378–380, 2012. View at Google Scholar
  21. A. Bernkop-Schnürch and S. Dünnhaupt, “Chitosan-based drug delivery systems,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 81, no. 3, pp. 463–469, 2012. View at Google Scholar
  22. L.-M. Zhang, C.-X. Wu, J.-Y. Huang, X.-H. Peng, P. Chen, and S.-Q. Tang, “Synthesis and characterization of a degradable composite agarose/HA hydrogel,” Carbohydrate Polymers, vol. 88, no. 4, pp. 1445–1452, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. A. S. Hoffman, “Hydrogels for biomedical applications,” Advanced Drug Delivery Reviews, vol. 54, no. 1, pp. 3–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. S. J. Kim, S. G. Yoon, Y. M. Lee, and S. I. Kim, “Electrical sensitive behavior of poly(vinyl alcohol)/poly (diallyldimethylammonium chloride) IPN hydrogel,” Sensors and Actuators B, vol. 88, no. 3, pp. 286–291, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Li, Z. Yuan, K. Y. Lam et al., “Model development and numerical simulation of electric-stimulus-responsive hydrogels subject to an externally applied electric field,” Biosensors and Bioelectronics, vol. 19, no. 9, pp. 1097–1107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. Q. Meng and J. Hu, “A review of shape memory polymer composites and blends,” Composites Part A, vol. 40, no. 11, pp. 1661–1672, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Yun, J. S. Im, Y.-S. Lee, T.-S. Bae, Y.-M. Lim, and H.-I. Kim, “PH and electro-responsive release behavior of MWCNT/PVA/PAAc composite microcapsules,” Colloids and Surfaces A, vol. 368, no. 1–3, pp. 23–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Zhang, Z. Zhang, and Y. Zhang, “The application of carbon nanotubes in target drug delivery systems for cancer therapies,” Nanoscale Research Letters, vol. 6, article 555, pp. 1–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Cirillo, S. Hampel, R. Klingeler et al., “Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications,” Journal of Pharmacy and Pharmacology, vol. 63, no. 2, pp. 179–188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Foldvari and M. Bagonluri, “Carbon nanotubes as functional excipients for nanomedicines: I. pharmaceutical properties,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 4, no. 3, pp. 173–182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Donaldson, R. Aitken, L. Tran et al., “Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety,” Toxicological Sciences, vol. 92, no. 1, pp. 5–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, and A. Rousset, “Specific surface area of carbon nanotubes and bundles of carbon nanotubes,” Carbon, vol. 39, no. 4, pp. 507–514, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Taylor, K. Lipert, K. Krämer et al., “Biocompatibility of iron filled carbon nanotubes in vitro,” Journal of Nanoscience and Nanotechnology, vol. 9, no. 10, pp. 5709–5716, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Li, J. He, Y. Zhao, G. Wang, and Q. Wei, “The effect of carbon nanotubes added into bullfrog collagen hydrogel on gentamicin sulphate release: in vitro,” Journal of Inorganic and Organometallic Polymers and Materials, vol. 21, no. 4, pp. 890–892, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Li, D. Q. Wang, B. L. Liu, and L. Z. Gao, “Synthesis of a novel gelatin-carbon nanotubes hybrid hydrogel,” Colloids and Surfaces B, vol. 33, no. 2, pp. 85–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. B. F. Erlanger, B.-X. Chen, M. Zhu, and L. Brus, “Binding of an anti-fullerene igg monoclonal antibody to single wall carbon nanotubes,” Nano Letters, vol. 1, no. 9, pp. 465–467, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Balavoine, P. Schultz, C. Richard, V. Mallouh, T. W. Ebbesen, and C. Mioskowski, “Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors,” Angewandte Chemie, vol. 38, no. 13-14, pp. 1912–1915, 1999. View at Google Scholar · View at Scopus
  38. M. P. Mattson, R. C. Haddon, and A. M. Rao, “Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth,” Journal of Molecular Neuroscience, vol. 14, no. 3, pp. 175–182, 2000. View at Google Scholar · View at Scopus
  39. Z. Guo, P. J. Sadler, and S. C. Tsang, “Immobilization and visualization of DNA and proteins on carbon nanotubes,” Advanced Materials, vol. 10, no. 9, pp. 701–703, 1998. View at Google Scholar · View at Scopus
  40. M. Foldvari and M. Bagonluri, “Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 4, no. 3, pp. 183–200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Zhang, Y. Bai, and B. Yan, “Functionalized carbon nanotubes for potential medicinal applications,” Drug Discovery Today, vol. 15, no. 11-12, pp. 428–435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Klumpp, K. Kostarelos, M. Prato, and A. Bianco, “Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics,” Biochimica et Biophysica Acta, vol. 1758, no. 3, pp. 404–412, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Bianco, K. Kostarelos, and M. Prato, “Applications of carbon nanotubes in drug delivery,” Current Opinion in Chemical Biology, vol. 9, no. 6, pp. 674–679, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Pastorin, “Crucial functionalizations of carbon nanotubes for improved drug delivery: a valuable option?” Pharmaceutical Research, vol. 26, no. 4, pp. 746–769, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. Z. Liu, X. Sun, N. Nakayama-Ratchford, and H. Dai, “Supramolecular chemistry on water- Soluble carbon nanotubes for drug loading and delivery,” ACS Nano, vol. 1, no. 1, pp. 50–56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Maeda, G. Y. Bharate, and J. Daruwalla, “Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 71, no. 3, pp. 409–419, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. N. W. S. Kam and H. Dai, “Carbon nanotubes as intracellular protein transporters: generality and biological functionality,” Journal of the American Chemical Society, vol. 127, no. 16, pp. 6021–6026, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. N. W. S. Kam, Z. Liu, and H. Dai, “Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway,” Angewandte Chemie, vol. 45, no. 4, pp. 577–581, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Pantarotto, C. D. Partidos, R. Graff et al., “Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides,” Journal of the American Chemical Society, vol. 125, no. 20, pp. 6160–6164, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. A. E. Porter, M. Gass, K. Muller, J. N. Skepper, P. A. Midgley, and M. Welland, “Direct imaging of single-walled carbon nanotubes in cells,” Nature Nanotechnology, vol. 2, no. 11, pp. 713–717, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Bianco, K. Kostarelos, and M. Prato, “Making carbon nanotubes biocompatible and biodegradable,” Chemical Communications, vol. 47, no. 37, pp. 10182–10188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. A. D. Gilmour, R. A. Green, and C. E. Thomson, “A low-maintenance, primary cell culture model for the assessment of carbon nanotube toxicity,” Toxicological & Environmental Chemistry, 2013. View at Publisher · View at Google Scholar
  53. A. Helland, P. Wick, A. Koehler, K. Schmid, and C. Som, “Reviewing the environmental and human health knowledge base of carbon nanotubes,” Environmental Health Perspectives, vol. 115, no. 8, pp. 1125–1131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. B. N. Snyder-Talkington, Y. Qian, V. Castranova, and N. L. Guo, “New perspectives in vitro risk assessment of multiwalled carbon nanotubes: application of coculture and bioinformatics,” Journal of Toxicology and Environmental Health B, vol. 15, pp. 468–492, 2012. View at Google Scholar
  55. G. Oberdörster, E. Oberdörster, and J. Oberdörster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environmental Health Perspectives, vol. 113, no. 7, pp. 823–839, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. X. Shi, B. Sitharaman, Q. P. Pham et al., “In vitro cytotoxicity of single-walled carbon nanotube/biodegradable polymer nanocomposites,” Journal of Biomedical Materials Research A, vol. 86, no. 3, pp. 813–823, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Newman, A. Minett, R. Ellis-Behnke, and H. Zreiqat, “Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering,” Nanomedicine, vol. 9, no. 8, pp. 1139–1158, 2013. View at Publisher · View at Google Scholar
  58. B. Sitharaman, X. Shi, X. F. Walboomers et al., “In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering,” Bone, vol. 43, no. 2, pp. 362–370, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. C.-W. Lam, J. T. James, R. McCluskey, and R. L. Hunter, “Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intractracheal instillation,” Toxicological Sciences, vol. 77, no. 1, pp. 126–134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Kang, M. Herzberg, D. F. Rodrigues, and M. Elimelech, “Antibacterial effects of carbon nanotubes: size does matter!,” Langmuir, vol. 24, no. 13, pp. 6409–6413, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. D. B. Warheit, “What is currently known about the health risks related to carbon nanotube exposures?” Carbon, vol. 44, no. 6, pp. 1064–1069, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. C. A. Poland, R. Duffin, I. Kinloch et al., “Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study,” Nature Nanotechnology, vol. 3, no. 7, pp. 423–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Dumortier, “When carbon nanotubes encounter the immune system: desirable and undesirable effects,” Advanced Drug Delivery Reviews, vol. 65, no. 15, pp. 2120–2126, 2013. View at Publisher · View at Google Scholar
  64. M. T. Byrne and Y. K. Guin'Ko, “Recent advances in research on carbon nanotube—polymer composites,” Advanced Materials, vol. 22, no. 15, pp. 1672–1688, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. D. Pantarotto, C. D. Partidos, J. Hoebeke et al., “Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses,” Chemistry and Biology, vol. 10, no. 10, pp. 961–966, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Singh, D. Pantarotto, L. Lacerda et al., “Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 9, pp. 3357–3362, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Yang, J. Wan, S. Zhang, Y. Zhang, S.-T. Lee, and Z. Liu, “In vivo pharmacokinetics, long-term biodistribution, and toxicology of pegylated graphene in mice,” ACS Nano, vol. 5, no. 1, pp. 516–522, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Von Der Mark, J. Park, S. Bauer, and P. Schmuki, “Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix,” Cell and Tissue Research, vol. 339, no. 1, pp. 131–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. B. L. Allen, P. D. Kichambare, P. Gou et al., “Biodegradation of single-walled carbon nanotubes through enzymatic catalysis,” Nano Letters, vol. 8, no. 11, pp. 3899–3903, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Russier, C. Ménard-Moyon, E. Venturelli et al., “Oxidative biodegradation of single- and multi-walled carbon nanotubes,” Nanoscale, vol. 3, no. 3, pp. 893–896, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. G. P. Kotchey, Y. Zhao, V. E. Kagan, and A. Star, “Peroxidase-mediated biodegradation of carbon nanotubes in vitro and in vivo,” Advanced Drug Delivery Reviews, vol. 65, no. 15, pp. 1921–1932, 2013. View at Publisher · View at Google Scholar
  72. V. E. Kagan, N. V. Konduru, W. Feng et al., “Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation,” Nature Nanotechnology, vol. 5, no. 5, pp. 354–359, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. G. Cirillo, F. Iemma, U. G. Spizzirri et al., “Synthesis of stimuli-responsive microgels for in vitro release of diclofenac diethyl ammonium,” Journal of Biomaterials Science, Polymer Edition, vol. 22, no. 4–6, pp. 823–844, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. I. Altimari, U. G. Spizzirri, F. Iemma, M. Curcio, F. Puoci, and N. Picci, “pH-sensitive drug delivery systems by radical polymerization of gelatin derivatives,” Journal of Applied Polymer Science, vol. 125, no. 4, pp. 3006–3013, 2012. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Li, D. Q. Wang, H. L. Chen, B. L. Liu, and L. Z. Gao, “A novel gelatin-carbon nanotubes hybrid hydrogel,” Macromolecular Bioscience, vol. 3, no. 12, pp. 720–724, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. D. J. A. Crommelin, K. Park, and A. Florence, “Pharmaceutical nanotechnology: unmet needs in drug delivery,” Journal of Controlled Release, vol. 141, no. 3, pp. 263–264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. N. S. Satarkar, D. Johnson, B. Marrs et al., “Hydrogel-MWCNT nanocomposites: synthesis, characterization, and heating with radiofrequency fields,” Journal of Applied Polymer Science, vol. 117, no. 3, pp. 1813–1819, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. P. Schexnailder and G. Schmidt, “Nanocomposite polymer hydrogels,” Colloid and Polymer Science, vol. 287, no. 1, pp. 1–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. A. J. Lovinger, “Nano-, bio-, multi-, inter-,...: polymer research in an era of prefixes,” Journal of Macromolecular Science, vol. 45, no. 3, pp. 195–199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. W. A. De Heer, W. S. Bacsa, A. Châtelain et al., “Aligned carbon nanotube films: production and optical and electronic properties,” Science, vol. 268, no. 5212, pp. 845–847, 1995. View at Google Scholar · View at Scopus
  81. S. J. Park, S. T. Lim, M. S. Cho, H. M. Kim, J. Joo, and H. J. Choi, “Electrical properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite,” Current Applied Physics, vol. 5, no. 4, pp. 302–304, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. D. K. Aktaş, G. A. Evingür, and Ö. Pekcan, “Critical exponents of gelation and conductivity in polyacrylamide gels doped by multiwalled carbon nanotubes,” Composite Interfaces, vol. 17, no. 4, pp. 301–318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. F. Hua, Y. Sun, A. Gaur et al., “Polymer imprint lithography with molecular-scale resolution,” Nano Letters, vol. 4, no. 12, pp. 2467–2471, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. C. Wang, Z.-X. Guo, S. Fu, W. Wu, and D. Zhu, “Polymers containing fullerene or carbon nanotube structures,” Progress in Polymer Science, vol. 29, no. 11, pp. 1079–1141, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. I.-C. Liu, H.-M. Huang, C.-Y. Chang, H.-C. Tsai, C.-H. Hsu, and R. C.-C. Tsiang, “Preparing a styrenic polymer composite containing well-dispersed carbon nanotubes: anionic polymerization of a nanotube-bound p-methylstyrene,” Macromolecules, vol. 37, no. 2, pp. 283–287, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. D. Baskaran, J. W. Mays, and M. S. Bratcher, “Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization,” Angewandte Chemie, vol. 43, no. 16, pp. 2138–2142, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. D. Yan and G. Yang, “A novel approach of in situ grafting polyamide 6 to the surface of multi-walled carbon nanotubes,” Materials Letters, vol. 63, no. 2, pp. 298–300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Mylvaganam and L. C. Zhang, “Nanotube functionalization and polymer grafting: an ab initio study,” Journal of Physical Chemistry B, vol. 108, no. 39, pp. 15009–15012, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Gao, S. Muthukrishnan, W. Li, J. Yuan, Y. Xu, and A. H. E. Müller, “Linear and hyperbranched glycopolymer-functionalized carbon nanotubes: synthesis, kinetics, and characterization,” Macromolecules, vol. 40, no. 6, pp. 1803–1815, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Li, F. Cheng, A. M. Duft, and A. Adronov, “Functionalization of single-walled carbon nanotubes with well-defined polystyrene by “click” coupling,” Journal of the American Chemical Society, vol. 127, no. 41, pp. 14518–14524, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. H. Kong, P. Luo, C. Gao, and D. Yan, “Polyelectrolyte-functionalized multiwalled carbon nanotubes: preparation, characterization and layer-by-layer self-assembly,” Polymer, vol. 46, no. 8, pp. 2472–2485, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. R. B. Martin, L. Qu, Y. Lin et al., “Functionalized carbon nanotubes with tethered pyrenes: synthesis and photophysical properties,” Journal of Physical Chemistry B, vol. 108, no. 31, pp. 11447–11453, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. F. J. Gómez, R. J. Chen, D. Wang, R. M. Waymouth, and H. Dai, “Ring opening metathesis polymerization on non-covalently functionalized single-walled carbon nanotubes,” Chemical Communications, vol. 9, no. 2, pp. 190–191, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. G. Cirillo, T. Caruso, S. Hampel et al., “Novel carbon nanotube composites by grafting reaction with water-compatible redox initiator system,” Colloid and Polymer Science, vol. 291, no. 3, pp. 699–708, 2013. View at Google Scholar
  95. X. Lou, C. Detrembleur, C. Pagnoulle et al., “Surface modification of multiwalled carbon nanotubes by poly(2-vinylpyridine): dispersion, selective deposition, and decoration of the nanotubes,” Advanced Materials, vol. 16, no. 23-24, pp. 2123–2127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. H.-M. Huang, I.-C. Liu, C.-Y. U. Chang, H.-C. Tsai, C.-H. Hsu, and R. C.-C. Tsiang, “Preparing a polystyrene-functionalized multiple-walled carbon nanotubes via covalently linking acyl chloride functionalities with living polystyryllithium,” Journal of Polymer Science A, vol. 42, no. 22, pp. 5802–5810, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Qin, D. Qin, W. T. Ford, J. E. Herrera, and D. E. Resasco, “Grafting of poly(4-vinylpyridine) to single-walled carbon nanotubes and assembly of multilayer films,” Macromolecules, vol. 37, no. 26, pp. 9963–9967, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. X. Dai, Z. Liu, B. Han et al., “Carbon nanotube/poly(2,4-hexadiyne-1,6-diol) nanocomposites prepared with the aid of supercritical CO2,” Chemical Communications, vol. 10, no. 19, pp. 2190–2191, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. H. Xu, X. Wang, Y. Zhang, and S. Liu, “Single-step in situ preparation of polymer-grafted multi-walled carbon nanotube composites under60Co γ-ray irradiation,” Chemistry of Materials, vol. 18, no. 13, pp. 2929–2934, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. P. Petrov, X. Lou, C. Pagnoulle, C. Jérôme, C. Calberg, and R. Jérôme, “Functionalization of multi-walled carbon nanotubes by electrografting of polyacrylonitrile,” Macromolecular Rapid Communications, vol. 25, no. 10, pp. 987–990, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. H. Zeng, C. Gao, Y. Wang et al., “In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior,” Polymer, vol. 47, no. 1, pp. 113–122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Nogales, G. Broza, Z. Roslaniec et al., “Low percolation threshold in nanocomposites based on oxidized single wall carbon nanotubes and poly(butylene terephthalate),” Macromolecules, vol. 37, no. 20, pp. 7669–7672, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. G. Xu, W.-T. Wu, Y. Wang et al., “Synthesis and characterization of water-soluble multiwalled carbon nanotubes grafted by a thermoresponsive polymer,” Nanotechnology, vol. 17, no. 10, pp. 2458–2465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. J. Cui, W. Wang, Y. You, C. Liu, and P. Wang, “Functionalization of multiwalled carbon nanotubes by reversible addition fragmentation chain-transfer polymerization,” Polymer, vol. 45, no. 26, pp. 8717–8721, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Chen, D. Chen, and G. Wu, “Grafting of poly(tBA) and PtBA-b-PMMA onto the surface of SWNTs using carbanions as the initiator,” Macromolecular Rapid Communications, vol. 27, no. 11, pp. 882–887, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. L. Qu, L. M. Veca, Y. Lin et al., “Soluble nylon-functionalized carbon nanotubes from anionic ring-opening polymerization from nanotube surface,” Macromolecules, vol. 38, no. 24, pp. 10328–10331, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. F. Buffa, H. Hu, and D. E. Resasco, “Side-wall functionalization of single-walled carbon nanotubes with 4-hydroxymethylaniline followed by polymerization of ε-caprolactone,” Macromolecules, vol. 38, no. 20, pp. 8258–8263, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. H. Kong, C. Gao, and D. Yan, “Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization,” Journal of the American Chemical Society, vol. 126, no. 2, pp. 412–413, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. Z. Yao, N. Braidy, G. A. Botton, and A. Adronov, “Polymerization from the surface of single-walled carbon nanotubes—preparation and characterization of nanocomposites,” Journal of the American Chemical Society, vol. 125, no. 51, pp. 16015–16024, 2003. View at Publisher · View at Google Scholar · View at Scopus
  110. S. Prakash, M. Malhotra, W. Shao, C. Tomaro-Duchesneau, and S. Abbasi, “Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy,” Advanced Drug Delivery Reviews, vol. 63, no. 14-15, pp. 1340–1351, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. X. Shi, B. Sitharaman, Q. P. Pham et al., “Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering,” Biomaterials, vol. 28, no. 28, pp. 4078–4090, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. B. C. Thompson, S. E. Moulton, K. J. Gilmore, M. J. Higgins, P. G. Whitten, and G. G. Wallace, “Carbon nanotube biogels,” Carbon, vol. 47, no. 5, pp. 1282–1291, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. Y. S. Song, “A passive microfluidic valve fabricated from a hydrogel filled with carbon nanotubes,” Carbon, vol. 50, no. 3, pp. 1417–1421, 2012. View at Publisher · View at Google Scholar · View at Scopus
  114. V. Lovat, D. Pantarotto, L. Lagostena et al., “Carbon nanotube substrates boost neuronal electrical signaling,” Nano Letters, vol. 5, no. 6, pp. 1107–1110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. P. R. Supronowicz, P. M. Ajayan, K. R. Ullmann, B. P. Arulanandam, D. W. Metzger, and R. Bizios, “Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation,” Journal of Biomedical Materials Research, vol. 59, no. 3, pp. 499–506, 2002. View at Publisher · View at Google Scholar · View at Scopus
  116. P. Galvan-Garcia, E. W. Keefer, F. Yang et al., “Robust cell migration and neuronal growth on pristine carbon nanotube sheets and yarns,” Journal of Biomaterials Science, Polymer Edition, vol. 18, no. 10, pp. 1245–1261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. A. Abarrategi, M. C. Gutiérrez, C. Moreno-Vicente et al., “Multiwall carbon nanotube scaffolds for tissue engineering purposes,” Biomaterials, vol. 29, no. 1, pp. 94–102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. X. Zhang, L. Meng, and Q. Lu, “Cell behaviors on polysaccharide-wrapped single-wall carbon nanotubes: a quantitative study of the surface properties of biomimetic nanofibrous scaffolds,” ACS Nano, vol. 3, no. 10, pp. 3200–3206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. B. Zhao, H. Hu, S. K. Mandal, and R. C. Haddon, “A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes,” Chemistry of Materials, vol. 17, no. 12, pp. 3235–3241, 2005. View at Publisher · View at Google Scholar · View at Scopus
  120. L. P. Zanello, B. Zhao, H. Hu, and R. C. Haddon, “Bone cell proliferation on carbon nanotubes,” Nano Letters, vol. 6, no. 3, pp. 562–567, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Chatterjee, M. W. Lee, and S. H. Woo, “Enhanced mechanical strength of chitosan hydrogel beads by impregnation with carbon nanotubes,” Carbon, vol. 47, no. 12, pp. 2933–2936, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. C. J. Ferris and M. In Het Panhuis, “Conducting bio-materials based on gellan gum hydrogels,” Soft Matter, vol. 5, no. 18, pp. 3430–3437, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. F. Puoci, S. Hampel, O. I. Parisi, A. Hassan, G. Cirillo, and N. Picci, “I mprinted microspheres doped with carbon nanotubes as novel electroresponsive drug-delivery systems,” Journal of Applied Polymer Science, vol. 130, no. 2, pp. 829–834, 2013. View at Publisher · View at Google Scholar
  124. G. Cirillo, O. Vittorio, S. Hampel et al., “Quercetin nanocomposite as novel anticancer therapeutic: improved efficinency and reduced toxicity,” European Journal of Pharmaceutical Sciences, vol. 49, no. 3, pp. 359–365, 2013. View at Publisher · View at Google Scholar
  125. A. A. Rodrigues, N. A. Batista, V. P. Bavaresco et al., “In vivo evaluation of hydrogels of polyvinyl alcohol with and without carbon nanoparticles for osteochondral repair,” Carbon, vol. 50, no. 6, pp. 2091–2099, 2012. View at Publisher · View at Google Scholar · View at Scopus
  126. Y. Huang, Y. Zheng, W. Song, Y. Ma, J. Wu, and L. Fan, “Poly(vinyl pyrrolidone) wrapped multi-walled carbon nanotube/poly(vinyl alcohol) composite hydrogels,” Composites Part A, vol. 42, no. 10, pp. 1398–1405, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. X. Shen, L. Chen, X. Cai, T. Tong, H. Tong, and J. Hu, “A novel method for the fabrication of homogeneous hydroxyapatite/collagen nanocomposite and nanocomposite scaffold with hierarchical porosity,” Journal of Materials Science, vol. 22, no. 2, pp. 299–305, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. P. Calvo-Marzal, M. Delaney, J. Auletta et al., “Manipulating mechanical properties with electricity: electroplastic elastomer hydrogels,” ACS Macro Letters, vol. 1, no. 1, pp. 204–208, 2012. View at Google Scholar
  129. S. H. Hong, T. T. Tung, L. K. H. Trang, T. Y. Kim, and K. S. Suh, “Preparation of single-walled carbon nanotube (SWNT) gel composites using poly(ionic liquids),” Colloid and Polymer Science, vol. 288, no. 9, pp. 1013–1018, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. X. Zhang, J. Liu, B. Xu, Y. Su, and Y. Luo, “Ultralight conducting polymer/carbon nanotube composite aerogels,” Carbon, vol. 49, no. 6, pp. 1884–1893, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. K.-S. Kim and S.-J. Park, “Influence of dispersion of multi-walled carbon nanotubes on the electrochemical performance of PEDOT-PSS films,” Materials Science and Engineering B, vol. 176, no. 3, pp. 204–209, 2011. View at Publisher · View at Google Scholar · View at Scopus
  132. Y. Xiao, L. He, and J. Che, “An effective approach for the fabrication of reinforced composite hydrogel engineered with SWNTs, polypyrrole and PEGDA hydrogel,” Journal of Materials Chemistry, vol. 22, no. 16, pp. 8076–8082, 2012. View at Publisher · View at Google Scholar · View at Scopus
  133. V. Saez-Martinez, A. Garcia-Gallastegui, C. Vera et al., “New hybrid system: poly(ethylene glycol) hydrogel with covalently bonded pegylated nanotubes,” Journal of Applied Polymer Science, vol. 120, no. 1, pp. 124–132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  134. Y. Ye, Y. Mao, H. Wang, and Z. Ren, “Hybrid structure of pH-responsive hydrogel and carbon nanotube array with superwettability,” Journal of Materials Chemistry, vol. 22, no. 6, pp. 2449–2455, 2012. View at Publisher · View at Google Scholar · View at Scopus
  135. T. Ogoshi, Y. Takashima, H. Yamaguchi, and A. Harada, “Chemically-responsive sol-gel transition of supramolecular single-walled carbon nanotubes (SWNTs) hydrogel made by hybrids of SWNTs and cyclodextrins,” Journal of the American Chemical Society, vol. 129, no. 16, pp. 4878–4879, 2007. View at Publisher · View at Google Scholar · View at Scopus
  136. K. Sui, S. Gao, W. Wu, and Y. Xia, “Injectable supramolecular hybrid hydrogels formed by MWNT-grafted- poly(ethylene glycol) and α-cyclodextrin,” Journal of Polymer Science A, vol. 48, no. 14, pp. 3145–3151, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. Z. Hui, X. Zhang, J. Yu et al., “Carbon nanotube-hybridized supramolecular hydrogel based on PEO-b-PPO-b-PEO/α-cyclodextrin as a potential biomaterial,” Journal of Applied Polymer Science, vol. 116, no. 4, pp. 1894–1901, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. G. A. Evingür and Ö. Pekcan, “Monitoring of dynamical processes in PAAmâ€" MWNTs composites by fluorescence method,” Advanced Composite Materials, vol. 21, no. 2, pp. 193–208, 2012. View at Google Scholar
  139. G. A. Evingr and Ö. Pekcan, “Elastic percolation of swollen polyacrylamide (PAAm)-multiwall carbon nanotubes composite,” Phase Transitions, vol. 85, no. 6, pp. 553–564, 2012. View at Google Scholar
  140. X. Zhang, C. L. Pint, M. H. Lee et al., “Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites,” Nano Letters, vol. 11, no. 8, pp. 3239–3244, 2011. View at Publisher · View at Google Scholar · View at Scopus
  141. G. Cirillo, K. Kraemer, S. Fuessel et al., “Biological activity of a gallic acid-gelatin conjugate,” Biomacromolecules, vol. 11, no. 12, pp. 3309–3315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. M. Curcio, F. Puoci, U. G. Spizzirri et al., “Negative thermo-responsive microspheres based on hydrolyzed gelatin as drug delivery device,” AAPS PharmSciTech, vol. 11, no. 2, pp. 652–662, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. G. Cirillo, O. Vittorio, S. Hampel, U. G. Spizzirri, N. Picci, and F. Iemma, “Incorporation of carbon nanotubes into a gelatin-catechin conjugate: innovative approach for the preparation of anticancer materials,” International Journal of Pharmaceutics, vol. 446, no. 1-2, pp. 176–182, 2013. View at Google Scholar
  144. S. Haider, S.-Y. Park, K. Saeed, and B. L. Farmer, “Swelling and electroresponsive characteristics of gelatin immobilized onto multi-walled carbon nanotubes,” Sensors and Actuators B, vol. 124, no. 2, pp. 517–528, 2007. View at Publisher · View at Google Scholar · View at Scopus
  145. U. G. Spizzirri, S. Hampel, G. Cirillo et al., “Spherical gelatin/CNTs hybrid microgels as electro-responsive drug delivery systems,” International Journal of Pharmaceutics, vol. 448, no. 1, pp. 115–122, 2013. View at Google Scholar
  146. S. Roy and A. Banerjee, “Functionalized single walled carbon nanotube containing amino acid based hydrogel: a hybrid nanomaterial,” RSC Advances, vol. 2, no. 5, pp. 2105–2111, 2012. View at Publisher · View at Google Scholar · View at Scopus
  147. J. Yun, J. S. Im, Y.-S. Lee, and H.-I. Kim, “Electro-responsive transdermal drug delivery behavior of PVA/PAA/MWCNT nanofibers,” European Polymer Journal, vol. 47, no. 10, pp. 1893–1902, 2011. View at Publisher · View at Google Scholar · View at Scopus
  148. J. S. Im, B. C. Bai, and Y.-S. Lee, “The effect of carbon nanotubes on drug delivery in an electro-sensitive transdermal drug delivery system,” Biomaterials, vol. 31, no. 6, pp. 1414–1419, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. A. Servant, L. Methven, R. P. Williams, and K. Kostarelos, “Electroresponsive polymer-carbon nanotube hydrogel hybrids for pulsatile drug delivery in vivo,” Advanced Healthcare Materials, vol. 2, no. 6, pp. 806–811, 2013. View at Google Scholar
  150. C. Li and R. Mezzenga, “Functionalization of multiwalled carbon nanotubes and their pH-responsive hydrogels with amyloid fibrils,” Langmuir, vol. 28, no. 27, pp. 10142–10146, 2012. View at Google Scholar
  151. E. Cheng, Y. Li, Z. Yang, Z. Deng, and D. Liu, “DNA-SWNT hybrid hydrogel,” Chemical Communications, vol. 47, no. 19, pp. 5545–5547, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. N. I. Kovtyukhova, T. E. Mallouk, L. Pan, and E. C. Dickey, “Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of carbon nanotube ropes,” Journal of the American Chemical Society, vol. 125, no. 32, pp. 9761–9769, 2003. View at Publisher · View at Google Scholar · View at Scopus
  153. Z. Sui, Q. Meng, X. Zhang, R. Ma, and B. Cao, “Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification,” Journal of Materials Chemistry, vol. 22, no. 18, pp. 8767–8771, 2012. View at Publisher · View at Google Scholar · View at Scopus