Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 828149, 9 pages
http://dx.doi.org/10.1155/2014/828149
Research Article

Inhibitory Effect on In Vitro LDL Oxidation and HMG Co-A Reductase Activity of the Liquid-Liquid Partitioned Fractions of Hericium erinaceus (Bull.) Persoon (Lion’s Mane Mushroom)

1Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1340, Bangladesh

Received 9 February 2014; Revised 11 April 2014; Accepted 11 April 2014; Published 13 May 2014

Academic Editor: Paul Evans

Copyright © 2014 Mohammad Azizur Rahman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Nagy, P. Tontonoz, J. G. A. Alvarez, H. Chen, and R. M. Evans, “Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ,” Cell, vol. 93, no. 2, pp. 229–240, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. M. S. Brown and J. L. Goldstein, “How LDL receptors influence cholesterol and atherosclerosis,” Scientific American, vol. 251, no. 5, pp. 58–66, 1984. View at Google Scholar · View at Scopus
  3. S. M. Grundy, “Oxidized LDL and atherogenesis: relation to risk factors for coronary heart disease,” Clinical Cardiology, vol. 16, no. 4, supplement 1, pp. I3–I5, 1993. View at Google Scholar · View at Scopus
  4. R. L. Walzem, S. Watkins, E. N. Frankel, R. J. Hansen, and J. B. German, “Older plasma lipoproteins are more susceptible to oxidation: a linking mechanism for the lipid and oxidation theories of atherosclerotic cardiovascular disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 16, pp. 7460–7464, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Jialal and S. Devaraj, “Low-density lipoprotein oxidation, antioxidants and atherosclerosis: a clinical biochemistry perspective,” Clinical Chemistry, vol. 42, no. 4, pp. 498–506, 1996. View at Google Scholar
  6. B. Halliwell, “Antioxidants in human health and disease,” Annual Review of Nutrition, vol. 16, pp. 33–50, 1996. View at Google Scholar
  7. V. Lobo, A. Patil, A. Phatak, and N. Chandra, “Free radicals, antioxidants and functional foods: impact on human health,” Pharmacognosy Reviews, vol. 4, no. 8, pp. 118–126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. C. J. Murray and A. D. Lopez, “Global mortality, disability, and the contribution of risk factors: global burden of disease study,” The Lancet, vol. 349, no. 9063, pp. 1436–1442, 1997. View at Google Scholar
  9. P. Libby, “Inflammation in atherosclerosis,” Nature, vol. 420, no. 6917, pp. 868–874, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. AHA, “AHA statistical update heart disease and stroke statistics—2012 update, a report from the American Heart Association,” Circulation, vol. 125, pp. e2–e220, 2012. View at Publisher · View at Google Scholar
  11. D. Li and J. L. Mehta, “Oxidized LDL, a critical factor in atherogenesis,” Cardiovascular Research, vol. 68, no. 3, pp. 353–354, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Yoshida and R. Kisugi, “Mechanisms of LDL oxidation,” Clinica Chimica Acta, vol. 411, no. 23-24, pp. 1875–1882, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. L. Witztum and D. Steinberg, “The oxidative modification hypothesis of atherosclerosis: does it hold for humans?” Trends in Cardiovascular Medicine, vol. 11, no. 3-4, pp. 93–102, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. A. Abdulla, S. M. Noor, V. Sabaratnam, N. Abdullah, K.-H. Wong, and H. M. Ali, “Effect of culinary-medicinal lion's mane mushroom, Hericium erinaceus (Bull.: Fr.) Pers. (Aphyllophoromycetideae), on ethanol-induced gastric ulcers in rats,” International Journal of Medicinal Mushrooms, vol. 10, no. 4, pp. 325–330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. D. Kay, P. M. Kris-Etherton, and S. G. West, “Effects of antioxidant-rich foods on vascular reactivity: review of the clinical evidence,” Current Atherosclerosis Reports, vol. 8, no. 6, pp. 510–522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Fontana, T. E. Meyer, S. Klein, and J. O. Holloszy, “Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 17, pp. 6659–6663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Abdullah, S. M. Ismail, N. Aminudin, A. S. Shuib, and B. F. Lau, “Evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE inhibitory activities,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 464238, 12 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Guillamón, A. García-Lafuente, M. Lozano et al., “Edible mushrooms: role in the prevention of cardiovascular diseases,” Fitoterapia, vol. 81, no. 7, pp. 715–723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. R. K. Jananie, V. Priya, and V. K. Lakshmi, “Gas chromatography-mass spectrum analysis of bioactive components of Agaricus bisporus,” Asian Journal of Pharmaceutical and Clinical Research, vol. 5, no. 2, 2012. View at Google Scholar
  20. I. C. F. R. Ferreira, L. Barros, and R. M. V. Abreu, “Antioxidants in wild mushrooms,” Current Medicinal Chemistry, vol. 16, no. 12, pp. 1543–1560, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J.-L. Mau, H.-C. Lin, and C.-C. Chen, “Antioxidant properties of several medicinal mushrooms,” Journal of Agricultural and Food Chemistry, vol. 50, no. 21, pp. 6072–6077, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Barros, P. Baptista, and I. C. F. R. Ferreira, “Effect of Lactarius piperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays,” Food and Chemical Toxicology, vol. 45, no. 9, pp. 1731–1737, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Wasser, “Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides,” Applied Microbiology and Biotechnology, vol. 60, no. 3, pp. 258–274, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. M.-F. Moradali, H. Mostafavi, S. Ghods, and G.-A. Hedjaroude, “Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi),” International Immunopharmacology, vol. 7, no. 6, pp. 701–724, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Ramesh and M. G. Pattar, “Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of western ghats of Karnataka, India,” Pharmacognosy Research, vol. 2, no. 2, pp. 107–112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Hearst, D. Nelson, G. McCollum et al., “An examination of antibacterial and antifungal properties of constituents of Shiitake (Lentinula edodes) and Oyster (Pleurotus ostreatus) mushrooms,” Complementary Therapies in Clinical Practice, vol. 15, no. 1, pp. 5–7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Lull, H. J. Wichers, and H. F. J. Savelkoul, “Antiinflammatory and immunomodulating properties of fungal metabolites,” Mediators of Inflammation, vol. 2005, no. 2, pp. 63–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Yamada, T. Oinuma, M. Niihashi et al., “Effects of Lentinus edodes mycelia on dietary-induced atherosclerotic involvement in rabbit aorta,” Journal of Atherosclerosis and Thrombosis, vol. 9, no. 3, pp. 149–156, 2002. View at Google Scholar · View at Scopus
  29. K. Mori, C. Kobayashi, T. Tomita, S. Inatomi, and M. Ikeda, “Antiatherosclerotic effect of the edible mushrooms Pleurotus eryngii (Eringi), Grifola frondosa (Maitake), and Hypsizygus marmoreus (Bunashimeji) in apolipoprotein E-deficient mice,” Nutrition Research, vol. 28, no. 5, pp. 335–342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Alam, K. N. Yoon, T. S. Lee, and U. Y. Lee, “Hypolipidemic activities of dietary Pleurotus ostreatus in hypercholesterolemic rats,” Mycobiology, vol. 39, no. 1, pp. 45–51, 2011. View at Google Scholar
  31. S. Hossain, M. Hashimoto, E. K. Choudhury et al., “Dietary mushroom (Pleurotus ostreatus) ameliorates atherogenic lipid in hypercholesterolaemic rats,” Clinical and Experimental Pharmacology and Physiology, vol. 30, no. 7, pp. 470–475, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. B.-K. Yang, G.-K. Kim, Y.-T. Jeong et al., “Hypoglycemic effects of exo-biopolymers produced by five different medicinal mushrooms in STZ-induced diabetic rats,” Mycobiology, vol. 36, no. 1, pp. 45–49, 2008. View at Google Scholar
  33. H. Lei, M. Zhang, Q. Wang et al., “MT-α-glucan from the fruit body of the maitake medicinal mushroom Grifola frondosa (higher basidiomyetes) shows protective effects for hypoglycemic pancreatic β-cells,” International Journal of Medicinal Mushrooms, vol. 15, no. 4, pp. 373–381, 2013. View at Google Scholar
  34. A. Gil-Ramirez, C. Clavijo, M. Palanisamy et al., “Study on the 3-hydroxy-3-methyl-glutaryl CoA reductase inhibitory properties of Agaricus bisporus and extraction of bioactive fractions using pressurised solvent technologies,” Journal of the Science of Food and Agriculture, vol. 93, no. 11, pp. 2789–2796, 2013. View at Publisher · View at Google Scholar
  35. P. Bobek, L. Ozdin, and L. Kuniak, “Mechanism of hypocholesterolemic effect of oyster mushroom (Pleurotus ostreatus) in rats: reduction of cholesterol absorption and increase of plasma cholesterol removal,” Zeitschrift fur Ernahrungswissenschaft, vol. 33, no. 1, pp. 44–50, 1994. View at Google Scholar · View at Scopus
  36. A. Berger, D. Rein, E. Kratky et al., “Cholesterol-lowering properties of Ganoderma lucidum in vitro, ex vivo, and in hamsters and minipigs,” Lipids in Health and Disease, vol. 3, no. 2, pp. 1–12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Yang, I. Hwang, S. Kim et al., “Lentinus edodes promotes fat removal in hypercholesterolemic mice,” Experimental and Therapeutic Medicine, vol. 6, no. 6, pp. 1409–1413, 2013. View at Google Scholar
  38. M. Fukushima, M. Nakano, Y. Morii, T. Ohashi, Y. Fujiwara, and K. Sonoyama, “Hepatic LDL receptor mRNA in rats is increased by dietary mushroom (Agaricus bisporus) fiber and sugar beet fiber,” Journal of Nutrition, vol. 130, no. 9, pp. 2151–2156, 2000. View at Google Scholar · View at Scopus
  39. H.-H. Cheng, W.-C. Hou, and M.-L. Lu, “Interactions of lipid metabolism and intestinal physiology with Tremella fuciformis Berk edible mushroom in rats fed a high-cholesterol diet with or without nebacitin,” Journal of Agricultural and Food Chemistry, vol. 50, no. 25, pp. 7438–7443, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Gu, “Liquid-liquid partitioning methods for bioseparations,” Separation Science and Technology, vol. 2, no. C, pp. 329–364, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. S. K. Sikdar, K. D. Cole, R. M. Stewart, D. C. Szlag, P. Todd, and H. Cabezas Jr., “Aqueous two-phase extraction in bioseparations: an assessment,” Nature Biotechnology, vol. 9, no. 3, pp. 252–256, 1991. View at Google Scholar · View at Scopus
  42. K. Mori, S. Inatomi, K. Ouchi, Y. Azumi, and T. Tuchida, “Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial,” Phytotherapy Research, vol. 23, no. 3, pp. 367–372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Mori, Y. Obara, M. Hirota et al., “Nerve growth factor-inducing activity of Hericium erinaceus in 1321N1 human astrocytoma cells,” Biological and Pharmaceutical Bulletin, vol. 31, no. 9, pp. 1727–1732, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. K.-H. Wong, S. Vikineswary, N. Abdullah, M. Naidu, and R. Keynes, “Activity of aqueous extracts of lion's mane mushroom Hericium erinaceus (Bull.: Fr.) Pers. (Aphyllophoromycetideae) on the neural cell line NG108-15,” International Journal of Medicinal Mushrooms, vol. 9, no. 1, pp. 57–65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. C. W. Jinn, H. H. Shu, T. W. Jih, S. C. Ker, and C. C. Yi, “Hypoglycemic effect of extract of Hericium erinaceus,” Journal of the Science of Food and Agriculture, vol. 85, no. 4, pp. 641–646, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. V. Mayakrishnan, N. Abdullah, M. H. Z. Abidin et al., “Investigation of the antioxidative potential of various solvent fractions from fruiting bodies of Schizophyllum commune (Fr.)mushrooms and characterization of phytoconstituents,” Journal of Agricultural Science, vol. 5, no. 6, pp. 58–68, 2013. View at Google Scholar
  47. H. Ahmadvand, M. Ani, and A. A. Moshtaghie, “Inhibitory effect of Allium cepa extract on LDL oxidation induced by CuSO4 in vitro compared with Allium sativum and Allium ascalonicom,” Iranian Journal of Pharmacology and Therapeutics, vol. 10, no. 2, pp. 67–71, 2011. View at Google Scholar · View at Scopus
  48. J. A. Buege and S. D. Aust, “Microsomal lipid peroxidation,” Methods in Enzymology, vol. 52, pp. 302–310, 1978. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Gholamhoseinian, B. Shahouzehi, and F. Sharifi-Far, “Inhibitory activity of some plant methanol extracts on 3-Hydroxy-3-Methylglutaryl coenzyme a reductase,” International Journal of Pharmacology, vol. 6, no. 5, pp. 705–711, 2010. View at Google Scholar · View at Scopus
  50. J. Morgan and D. S. Leake, “Oxidation of low density lipoprotein by iron or copper at acidic pH,” Journal of Lipid Research, vol. 36, no. 12, pp. 2504–2512, 1995. View at Google Scholar · View at Scopus
  51. E. C. Tatsis, S. Boeren, V. Exarchou, A. N. Troganis, J. Vervoort, and I. P. Gerothanassis, “Identification of the major constituents of Hypericum perforatum by LC/SPE/NMR and/or LC/MS,” Phytochemistry, vol. 68, no. 3, pp. 383–393, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Zhang, G. L. Mills, and M. G. Nair, “Cyclooxygenase inhibitory and antioxidant compounds from the fruiting body of an edible mushroom, Agrocybe aegerita,” Phytomedicine, vol. 10, no. 5, pp. 386–390, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Yaoita, R. Kakuda, K. Machida et al., “Ceramide constituents from five mushrooms,” Chemical and Pharmaceutical Bulletin, vol. 50, no. 5, pp. 551–553, 2002. View at Google Scholar
  54. K. Pavel, “Chemical composition and nutritional value of European species of wild growing mushrooms,” in Mushrooms: Types, Properties and Nutrition, S. Andres and N. Baumann, Eds., Nova Science, 2012. View at Google Scholar
  55. S. M. Lynch and B. Frei, “Mechanisms of copper- and iron-dependent oxidative modification of human low density lipoprotein,” Journal of Lipid Research, vol. 34, no. 10, pp. 1745–1753, 1993. View at Google Scholar · View at Scopus
  56. F. Visioli, R. Bordone, C. Perugini, M. Bagnati, C. Cau, and G. Bellomo, “The kinetics of copper-induced LDL oxidation depend upon its lipid composition and antioxidant content,” Biochemical and Biophysical Research Communications, vol. 268, no. 3, pp. 818–822, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Steinberg, S. Parthasarathy, T. E. Carew, J. C. Khoo, and J. L. Witztum, “Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity,” New England Journal of Medicine, vol. 320, no. 14, pp. 915–924, 1989. View at Google Scholar · View at Scopus
  58. C. L. Miranda, J. F. Stevens, V. Ivanov et al., “Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro,” Journal of Agricultural and Food Chemistry, vol. 48, no. 9, pp. 3876–3884, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Lapeyre, M. Delomenède, F. Bedos-Belval, H. Duran, A. Nègre-Salvayre, and M. Baltas, “Design, synthesis, and evaluation of pharmacological properties of cinnamic derivatives as antiatherogenic agents,” Journal of Medicinal Chemistry, vol. 48, no. 26, pp. 8115–8124, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Turchi, G. Alagona, and V. Lubrano, “Protective activity of plicatin B against human LDL oxidation induced in metal ion-dependent and -independent processes. Experimental and theoretical studies,” Phytomedicine, vol. 16, no. 11, pp. 1014–1026, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Lefèvre, M. Beljean-Leymarie, F. Beyerle et al., “Evaluation of lipid peroxidation by assaying the thiobarbituric acid-reactive substances,” Annales de Biologie Clinique, vol. 56, no. 3, pp. 305–319, 1998. View at Google Scholar · View at Scopus
  62. American Heart Association, “Revision 2000: A statement for healthcare professionals from the nutrition committee of the American Heart Association,” Circulation, vol. 102, pp. 2296–2311, 2000. View at Google Scholar
  63. L. L. Stoll, M. L. McCormick, G. M. Denning, and N. L. Weintraub, “Antioxidant effects of statins,” Drugs of Today, vol. 40, no. 12, pp. 975–989, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Gelosa, M. Cimino, A. Pignieri, E. Tremoli, U. Guerrini, and L. Sironi, “The role of HMG-CoA reductase inhibition in endothelial dysfunction and inflammation,” Vascular Health and Risk Management, vol. 3, no. 5, pp. 567–577, 2007. View at Google Scholar · View at Scopus
  65. M. K. Ito, R. L. Talbert, and S. Tsimikas, “Statin-associated pleiotropy: possible beneficial effects beyond cholesterol reduction,” Pharmacotherapy, vol. 26, no. 7, pp. 85S–97S, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. H. G. Park, T. H. Lee, F. Chang et al., “Synthesis of ergosterol and 5,6-Dihydroergosterol glycosides and their inhibitory activities on lipopolysaccharide-induced nitric oxide production,” Bulletin of Korean Chemical Society, vol. 34, no. 5, p. 1339, 2013. View at Google Scholar
  67. H. Hajjaj, C. Macé, M. Roberts, P. Niederberger, and L. B. Fay, “Effect of 26-oxygenosterols from Ganoderma lucidum and their activity as cholesterol synthesis inhibitors,” Applied and Environmental Microbiology, vol. 71, no. 7, pp. 3653–3658, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. H.-B. Zhao, S.-Z. Wang, Q.-H. He, L. Yuan, A. F. Chen, and Z.-B. Lin, “Ganoderma total sterol (GS) and GS1 protect rat cerebral cortical neurons from hypoxia/reoxygenation injury,” Life Sciences, vol. 76, no. 9, pp. 1027–1037, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. J. E. Hunter, J. Zhang, P. M. Kris-Etherton, and L. Childs, “Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review,” American Journal of Clinical Nutrition, vol. 91, no. 1, pp. 46–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. M. N. Peyrat-Maillard, M. E. Cuvelier, and C. Berset, “Antioxidant activity of phenolic compounds in 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidation: synergistic and antagonistic effects,” Journal of the American Oil Chemists' Society, vol. 80, no. 10, pp. 1007–1012, 2003. View at Google Scholar · View at Scopus