Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 836025, 9 pages
http://dx.doi.org/10.1155/2014/836025
Research Article

Targeting the Raft-Associated Akt Signaling in Hepatocellular Carcinoma

1Department of Pathology and Hepatology, Beijing 302 Hospital, 100 Xi Si Huan Middle Road, Fengtai District, Beijing 100039, China
2First Hepatobiliary Surgery Center, Beijing 302 Hospital, 100 Xi Si Huan Middle Road, Fengtai District, Beijing 100039, China
3Secondary Hepatobiliary Surgery Center, Beijing 302 Hospital, 100 Xi Si Huan Middle Road, Fengtai District, Beijing 100039, China
4Beijing Institute of Infectious Diseases, Beijing 302 Hospital, 100 Xi Si Huan Middle Road, Fengtai District, Beijing 100039, China

Received 29 April 2014; Revised 30 June 2014; Accepted 14 July 2014; Published 27 August 2014

Academic Editor: Jun Yong Park

Copyright © 2014 Yuan Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Fensterle, B. Aicher, I. Seipelt, M. Teifel, and J. Engel, “Current view on the mechanism of action of perifosine in cancer,” Anti-Cancer Agents in Medicinal Chemistry, vol. 14, no. 4, pp. 629–635, 2014. View at Google Scholar
  2. D. Delmas, V. Aires, D. J. Colin et al., “Importance of lipid microdomains, rafts, in absorption, delivery, and biological effects of resveratrol,” Annals of the New York Academy of Sciences, vol. 1290, no. 1, pp. 90–97, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Staubach and F. Hanisch, “Lipid rafts: signaling and sorting platforms of cells and their roles in cancer,” Expert Review of Proteomics, vol. 8, no. 2, pp. 263–277, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. K. S. George and S. Wu, “Lipid raft: A floating island of death or survival,” Toxicology and Applied Pharmacology, vol. 259, no. 3, pp. 311–319, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Csoboz, G. E. Balogh, E. Kusz et al., “Membrane fluidity matters: hyperthermia from the aspects of lipids and membranes,” International Journal of Hyperthermia, vol. 29, no. 5, pp. 491–499, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. B. P. Head, H. H. Patel, and P. A. Insel, “Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function. Membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling,” Biochimica et Biophysica Acta, vol. 1838, no. 2, pp. 532–545, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Nicolini, P. Ferrari, M. Fini et al., “Cancer stem cells: perspectives of new therapeutical approaches for breast cancer,” Frontiers in Bioscience, vol. 3, no. 4, pp. 1486–1499, 2011. View at Google Scholar · View at Scopus
  8. L. Nimri, H. Barak, L. Graeve, and B. Schwartz, “Restoration of caveolin-1 expression suppresses growth, membrane-type-4 metalloproteinase expression and metastasis-associated activities in colon cancer cells,” Molecular Carcinogenesis, vol. 52, no. 11, pp. 859–870, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Gong, L. Song, C. Lin et al., “Downregulation of miR-138 sustains NF-κB activation and promotes lipid raft formation in esophageal squamous cell carcinoma,” Clinical Cancer Research, vol. 19, no. 5, pp. 1083–1093, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Song, H. Gong, C. Lin et al., “Flotillin-1 promotes tumor necrosis factor-α receptor signaling and activation of NF-κb in esophageal squamous cell carcinoma cells,” Gastroenterology, vol. 143, no. 4, pp. 995.e12–1005.e12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Zhang, C. Wang, L. Shi et al., “High expression of FLOT1 is associated with progression and poor prognosis in hepatocellular carcinoma,” PLoS ONE, vol. 8, no. 6, Article ID e64709, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Kikuchi, C. P. Oliveira, and F. J. Carrilho, “Nonalcoholic fatty liver disease and hepatocellular carcinoma,” BioMed Research International, vol. 2014, Article ID 106247, 6 pages, 2014. View at Publisher · View at Google Scholar
  13. Y. Liu, G. Yang, X. Bu et al., “Cell-type-specific regulation of raft-associated Akt signaling,” Cell Death and Disease, vol. 2, no. 4, p. e145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Briest and P. Grabowski, “PI3K-AKT-mTOR-signaling and beyond: the complex network in gastroenteropancreatic neuroendocrine neoplasms,” Theranostics, vol. 4, no. 4, pp. 336–365, 2014. View at Google Scholar
  15. S. Heavey, K. J. O'Byrne, and K. Gately, “Strategies for co-targeting the PI3K/AKT/mTOR pathway in NSCLC,” Cancer Treatment Reviews, vol. 40, no. 3, pp. 445–456, 2014. View at Google Scholar
  16. S. M. Gadgeel and A. Wozniak, “Preclinical rationale for PI3K/Akt/mTOR pathway inhibitors as therapy for epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer,” Clinical Lung Cancer, vol. 14, no. 4, pp. 322–332, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. S. B. Edge and C. C. Compton, “The american joint committee on cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM,” Annals of Surgical Oncology, vol. 17, no. 6, pp. 1471–1474, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Liu, X. Wang, X. Yang, S. Jing, L. Zhu, and S. Gao, “Lung and intestine: a specific link in an ulcerative colitis rat model,” Gastroenterology Research and Practice, vol. 2013, Article ID 124530, 13 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Liu, Q. Hua, H. Lei, and P. Li, “Effect of Tong Luo Jiu Nao on Aβ-degrading enzymes in AD rat brains,” Journal of Ethnopharmacology, vol. 137, no. 2, pp. 1035–1046, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Cokakli, E. Erdal, D. Nart et al., “Differential expression of Caveolin-1 in hepatocellular carcinoma: correlation with differentiation state, motility and invasion,” BMC Cancer, vol. 9, article 65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Gai, Z. Lu, K. Tu, Z. Liang, and X. Zheng, “Caveolin-1 is up-regulated by GLI1 and contributes to GLI1-driven EMT in hepatocellular carcinoma,” PLoS ONE, vol. 9, no. 1, Article ID e84551, 2014. View at Google Scholar
  22. R. Wang, Z. Li, H. Guo et al., “Caveolin 1 knockdown inhibits the proliferation, migration and invasion of human breast cancer BT474 cells,” Molecular Medicine Reports, vol. 9, no. 5, pp. 1723–1728, 2014. View at Google Scholar
  23. N. C. Bennett, J. D. Hooper, D. W. Johnson, and G. C. Gobe, “Expression profiles and functional associations of endogenous androgen receptor and caveolin-1 in prostate cancer cell lines,” The Prostate, vol. 74, no. 5, pp. 478–487, 2014. View at Google Scholar
  24. X. Gu, S. J. Fliesler, Y. Y. Zhao, W. B. Stallcup, A. W. Cohen, and M. H. Elliott, “Loss of caveolin-1 causes blood-retinal barrier breakdown, venous enlargement, and mural cell alteration,” American Journal of Pathology, vol. 184, no. 2, pp. 541–555, 2014. View at Google Scholar