Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 841573, 10 pages
http://dx.doi.org/10.1155/2014/841573
Review Article

Characteristics, Process Parameters, and Inner Components of Anaerobic Bioreactors

1State Environmental Protection Engineering Center for Pollution Control in Textile, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
2Industrial Research and Consultancy Center (IRCC), Khartoum 13314, Sudan

Received 20 September 2013; Revised 6 November 2013; Accepted 6 November 2013; Published 23 January 2014

Academic Editor: Chong-Jian Tang

Copyright © 2014 Awad Abdelgadir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. S. Mittal, “Treatment of wastewater from abattoirs before land application—a review,” Bioresource Technology, vol. 97, no. 9, pp. 1119–1135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Wijetunga, X.-F. Li, and C. Jian, “Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor,” Journal of Hazardous Materials, vol. 177, no. 1-3, pp. 792–798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Seghezzo, G. Zeeman, J. B. Van Lier, H. V. M. Hamelers, and G. Lettinga, “A review: the anaerobic treatment of sewage in UASB and EGSB reactors,” Bioresource Technology, vol. 65, no. 3, pp. 175–190, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Aiyuk, I. Forrez, D. K. Lieven, A. van Haandel, and W. Verstraete, “Anaerobic and complementary treatment of domestic sewage in regions with hot climates-A review,” Bioresource Technology, vol. 97, no. 17, pp. 2225–2241, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. P. L. McCarty, “Anaerobic waste treatment fundamentals,” Public Works, vol. 95, no. 9, pp. 107–112, 1964. View at Google Scholar
  6. S. Chong, T. K. Sen, A. Kayaalp, and H. M. Ang, “The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment - A State-of-the-art review,” Water Research, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. P.-J. Meynell, Methane: Planning a Digester, Schocken Books, New York, NY, USA, 1976.
  8. P. J. Reddy, Municipal Solid Waste Management: Processing-Energy Recovery-Global Examples, CRC Press, 2011.
  9. G. Lettinga et al., “Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment,” Biotechnology and Bioengineering, vol. 22, no. 4, pp. 699–734, 1980. View at Google Scholar
  10. M. T. Kato, J. A. Field, P. Versteeg, and G. Lettinga, “Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters,” Biotechnology and Bioengineering, vol. 44, no. 4, pp. 469–479, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. X.-G. Chen, P. Zheng, Y.-J. Guo, Q. Mahmood, C.-J. Tang, and S. Ding, “Flow patterns of super-high-rate anaerobic bioreactor,” Bioresource Technology, vol. 101, no. 20, pp. 7731–7735, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Chen, Z. Ping, S. Ding et al., “Specific energy dissipation rate for super-high-rate anaerobic bioreactor,” Journal of Chemical Technology and Biotechnology, vol. 86, no. 5, pp. 749–756, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. X.-G. Chen, P. Zheng, M. Qaisar, and C.-J. Tang, “Dynamic behavior and concentration distribution of granular sludge in a super-high-rate spiral anaerobic bioreactor,” Bioresource Technology, vol. 111, pp. 134–140, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. L. W. Hulshoff Pol, S. I. De Castro Lopes, G. Lettinga, and P. N. L. Lens, “Anaerobic sludge granulation,” Water Research, vol. 38, no. 6, pp. 1376–1389, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. K. M. Kangle, V. S. Kore, and G. S. Kulkarni, “Recent trends in anaerobic codigestion: a review,” Universal Journal of Environmental Research and Technology, vol. 2, no. 4, pp. 210–219, 2012. View at Google Scholar
  16. C. Buijs, P. M. Heertjes, and R. R. van der Meer, “Distribution and behavior of sludge in upflow reactors for anaerobic treatment of wastewater,” Biotechnology and Bioengineering, vol. 24, no. 9, pp. 1975–1989, 1982. View at Google Scholar · View at Scopus
  17. T. Hidaka, F. wang, T. Togari et al., “Comparative performance of mesophilic and thermophilic anaerobic digestion for high-solid sewage sludge,” Bioresource Technology, vol. 149, pp. 177–183, 2013. View at Google Scholar
  18. E. Lloret, L. Pastor, P. Pradas, and J. Pascual, “Semi full-scale thermophilic anaerobic digestion (TAnD) for advanced treatment of sewage sludge: stabilization process and pathogen reduction,” Chemical Engineering Journal, vol. 232, pp. 42–50, 2013. View at Publisher · View at Google Scholar
  19. T. Abbasi, S. M. Tauseef, and S. A. Abbasi, “Anaerobic digestion for global warming control and energy generation - An overview,” Renewable and Sustainable Energy Reviews, vol. 16, no. 5, pp. 3228–3242, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. M. T. Madigan, J. M. Martinko, D. Stahl, and D. P. Clark, Brock Biology of Microorganisms, Benjamin-Cummings, Reading, Mass, USA, 2008.
  21. M. Kayhanian, “Biodegradability of the organic fraction of municipal solid waste in a high-solids anaerobic digester,” Waste Management and Research, vol. 13, no. 2, pp. 123–136, 1995. View at Google Scholar · View at Scopus
  22. K. Ostrem, Greening Waste: Anaerobic Digestion for Treating the Organic Fraction of Municipal Solid Wastes, Earth Engineering Center Columbia University, 2004.
  23. S. Berger, C. Welte, and U. Deppenmeier, “Acetate activation in methanosaeta thermophila: characterization of the key enzymes pyrophosphatase and acetyl-CoA synthetase,” Archaea, 2012. View at Google Scholar
  24. R. A. Mah, M. R. Smith, and L. Baresi, “Studies on an acetate-fermenting strain of Methanosarcina,” Applied and Environmental Microbiology, vol. 35, no. 6, pp. 1174–1184, 1978. View at Google Scholar · View at Scopus
  25. M. Takashima and R. E. Speece, “Mineral nutrient requirements for high-rate methane fermentation of acetate at low SRT,” Research Journal of the Water Pollution Control Federation, vol. 61, no. 11-12, pp. 1645–1650, 1989. View at Google Scholar · View at Scopus
  26. K. H. Hansen, I. Angelidaki, and B. K. Ahring, “Anaerobic digestion of swine manure: inhibition by ammonia,” Water Research, vol. 32, no. 1, pp. 5–12, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Kayhanian, “Ammonia inhibition in high-solids biogasification: an overview and practical solutions,” Environmental Technology, vol. 20, no. 4, pp. 355–365, 1999. View at Google Scholar · View at Scopus
  28. S. Sung and T. Liu, “Ammonia inhibition on thermophilic anaerobic digestion,” Chemosphere, vol. 53, no. 1, pp. 43–52, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Y. Ji, K. Zheng, Y. J. Xing, and P. Zheng, “Hydraulic characteristics and their effects on working performance of compartmentalized anaerobic reactor,” Bioresource Technology, vol. 116, pp. 47–52, 2012. View at Google Scholar
  30. N. G. Adrien, “Processing water, wastewater, residuals, and excreta for health and environmental protection,” in An Encyclopedic Dictionary, 2008. View at Google Scholar
  31. M. T. Agler, Z. Aydinkaya, T. A. Cummings, A. R. Beers, and L. T. Angenent, “Anaerobic digestion of brewery primary sludge to enhance bioenergy generation: a comparison between low- and high-rate solids treatment and different temperatures,” Bioresource Technology, vol. 101, no. 15, pp. 5842–5851, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. W. J. Gao, K. T. Leung, W. S. Qin, and B. Q. Liao, “Effects of temperature and temperature shock on the performance and microbial community structure of a submerged anaerobic membrane bioreactor,” Bioresource Technology, vol. 102, no. 19, pp. 8733–8740, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Mahmoud, G. Zeeman, H. Gijzen, and G. Lettinga, “Solids removal in upflow anaerobic reactors, a review,” Bioresource Technology, vol. 90, no. 1, pp. 1–9, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. M. K. Winkler, J. P. Bassin, R. Kleerebezem, R. G. van der Lans, and M. C. van Loosdrecht, “Temperature and salt effects on settling velocity in granular sludge technology,” Water Research, vol. 46, no. 12, pp. 3897–3902, 2012. View at Google Scholar
  35. G. Lettinga, S. Rebac, and G. Zeeman, “Challenge of psychrophilic anaerobic wastewater treatment,” Trends in Biotechnology, vol. 19, no. 9, pp. 363–370, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. D. C. Katarzyna Bialek and V. O'Flaherty, “Low-Temperature (10°C) anaerobic digestion of dilute dairy wastewater in an EGSB bioreactor: microbial community structure, population dynamics, and kinetics of methanogenic populations,” Archaea, 2013. View at Google Scholar
  37. H. M. El-Mashad, G. Zeeman, W. K. P. Van Loon, G. P. A. Bot, and G. Lettinga, “Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure,” Bioresource Technology, vol. 95, no. 2, pp. 191–201, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Ge, P. D. Jensen, and D. J. Batstone, “Increased temperature in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge,” Journal of Hazardous Materials, vol. 187, no. 1-3, pp. 355–361, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Florencio, A. Nozhevnikova, A. Van Langerak, A. J. M. Stams, J. A. Field, and G. Lettinga, “Acidophilic degradation of methanol by a methanogenic enrichment culture,” FEMS Microbiology Letters, vol. 109, no. 1, pp. 1–6, 1993. View at Google Scholar · View at Scopus
  40. H. H. P. Fang and X.-S. Jia, “Soluble microbial products (SMP) of acetotrophic methanogenesis,” Bioresource Technology, vol. 66, no. 3, pp. 235–239, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. X.-G. Chen, P. Zheng, J. Cai, and M. Qaisar, “Bed expansion behavior and sensitivity analysis for super-high-rate anaerobic bioreactor,” Journal of Zhejiang University, vol. 11, no. 2, pp. 79–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Zheng, J. W. Chen, and C. J. Tang, “A new type of spiral automatic circulation anaerobic reactor,” ZL200720106182.6, 2008. (Chinese).
  43. J. Chen, C. Tang, P. Zheng, and L. Zhang, “Performance of lab-scale SPAC anaerobic bioreactor with high loading rate,” Chinese Journal of Biotechnology, vol. 24, no. 8, pp. 1413–1419, 2008. View at Google Scholar · View at Scopus
  44. I. Ruiz, M. C. Veiga, P. De Santiago, and R. Blázquez, “Treatment of slaughterhouse wastewater in a UASB reactor and an anaerobic filter,” Bioresource Technology, vol. 60, no. 3, pp. 251–258, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Kalyuzhnyi, L. Estrada De Los Santos, and J. R. Martinez, “Anaerobic treatment of raw and preclarified potato-maize wastewaters in a UASB reactor,” Bioresource Technology, vol. 66, no. 3, pp. 195–199, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. T. A. Elmitwalli, M. H. Zandvoort, G. Zeeman, H. Burning, and G. Lettinga, “Low temperature treatment of domestic sewage in upflow anaerobic sludge blanket and anaerobic hybrid reactors,” Water Science and Technology, vol. 39, no. 5, pp. 177–185, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Halalsheh, J. Koppes, J. Den Elzen, G. Zeeman, M. Fayyad, and G. Lettinga, “Effect of SRT and temperature on biological conversions and the related scum-forming potential,” Water Research, vol. 39, no. 12, pp. 2475–2482, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. V. H. Varel, A. G. Hashimoto, and Y. R. Chen, “Effect of temperature and retention time on methane production from beef cattle waste,” Applied and Environmental Microbiology, vol. 40, no. 2, pp. 217–222, 1980. View at Google Scholar · View at Scopus
  49. W. J. Jewell, “Anaerobic sewage treatment,” Environmental Science and Technology, vol. 21, no. 1, pp. 14–21, 1987. View at Google Scholar · View at Scopus
  50. N. Mahmoud, G. Zeeman, H. Gijzen, and G. Lettinga, “Anaerobic stabilisation and conversion of biopolymers in primary sludge - Effect of temperature and sludge retention time,” Water Research, vol. 38, no. 4, pp. 983–991, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Zeeman, W. T. M. Sanders, K. Y. Wang, and G. Lettinga, “Anaerobic treatment of complex wastewater and waste activated sludge—application of an upflow anaerobic solid removal (UASR) reactor for the removal and pre-hydrolysis of suspended COD,” Water Science and Technology, vol. 35, no. 10, pp. 121–128, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Landa, A. Capella, and B. Jiménez, “Particle size distribution in an efluent from an advanced primary treatment and its removal during filtration,” Water Science and Technology, vol. 36, no. 4, pp. 159–165, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Lettinga, J. A. Field, R. Sierra-Alvarez, J. B. Van Lier, and J. Rintala, “Future perspectives for the anaerobic treatment of forest industry wastewaters,” Water Science and Technology, vol. 24, no. 3-4, pp. 91–102, 1991. View at Google Scholar · View at Scopus
  54. S. Chelliapan, T. Wilby, and P. J. Sallis, “Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics,” Water Research, vol. 40, no. 3, pp. 507–516, 2006. View at Google Scholar
  55. C. Wei, L. Li, J. Wu, C. Wu, and J. Wu, “Influence of funnel-shape internals on hydrodynamics and mass transfer in internal loop three-phase fluidized bed,” Journal of Chemical Industry and Engineering, vol. 58, no. 3, pp. 591–595, 2007. View at Google Scholar · View at Scopus
  56. K. Karim, G. J. Thoma, and M. H. Al-Dahhan, “Gas-lift digester configuration effects on mixing effectiveness,” Water Research, vol. 41, no. 14, pp. 3051–3060, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. J. B. Van Lier, J. L. Sanz Martin, and G. Lettinga, “Effect of temperature on the anaerobic thermophilic conversion of volatile fatty acids by dispersed and granular sludge,” Water Research, vol. 30, no. 1, pp. 199–207, 1996. View at Google Scholar · View at Scopus
  58. P. N. L. Lens, M. C. Van Den Bosch, L. W. Hulshoff Pol, and G. Lettinga, “Effect of staging on volatile fatty acid degradation in a sulfidogenic granular sludge reactor,” Water Research, vol. 32, no. 4, pp. 1178–1192, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Yanling, Anaerobic Biological Treatment of Wastewater, China Light Industry Press, Beijing, China, 1998, (Chinese).
  60. L. Guyuan, D. Junfeng, J. I. Fangying, and L. Ning, “Study on the characteristic of spiral Up-flow reactor system and its performance on biological nitrogen and phosphorus removal,” Acta Scientiae Circumstantiae, vol. 24, no. 1, pp. 15–20, 2004 (Chinese). View at Google Scholar
  61. T. Ji, G. Luo, D. Wang, X. Xu, and L. Zhu, “Effect of prolonged sludge age on biological nutrient removal in spiral up-flow reactor system and flow pattern interpretation,” Journal of Chemical Industry and Engineering, vol. 58, no. 10, pp. 2613–2618, 2007. View at Google Scholar · View at Scopus
  62. Y. Hong-lin, L. Yong-jun, and W. Xiao-chang, “Microbial community structure and dynamic changes of fluidized-Pellet-Bee Bioreactor,” Journal of Microbiology, vol. 27, no. 2, pp. 1–5, 2007 (Chinese). View at Google Scholar
  63. Y. Honglin, W. Xiaochang, and W. Li, “Comparison of microbial growth in a fluidized-pellet-bed bioreactor and an A~2/O process,” Acta Scientiae Circumstantiae, vol. 27, no. 6, pp. 973–978, 2007. View at Google Scholar
  64. H. L. Yuan and Y. J. Liu, “Pilot study of a fluidized pellet—bed bioreactor for simultaneous biodegradation and solid/liquid separation in municipal wastewater treatment future of urban wastewater systems decentralization and reuse,” in Proceedings of IWA Conference, pp. 253–260, Xian, China, 2005.
  65. W. J. Weber Jr., M. Pirbazari, and G. L. Melson, “Biological growth on activated carbon: an investigation by scanning electron microscopy,” Environmental Science and Technology, vol. 12, no. 7, pp. 817–819, 1978. View at Google Scholar · View at Scopus
  66. P. L. McCarty and D. P. Smith, “Anaerobic wastewater treatment,” Environmental Science and Technology, vol. 20, no. 12, pp. 1200–1206, 1986. View at Google Scholar · View at Scopus
  67. F. X. Zheng Ping, Waste Biological Treatment, Higher Education Press, Beijing, China, 2006.
  68. A. Tanyolaç and H. Beyenal, “Prediction of substrate consumption rate, average biofilm density and active thickness for a thin spherical biofilm at pseudo-steady state,” Biochemical Engineering Journal, vol. 2, no. 3, pp. 207–216, 1998. View at Google Scholar · View at Scopus
  69. F. K. J. Rabah and M. F. Dahab, “Biofilm and biomass characteristics in high-performance fluidized-bed biofilm reactors,” Water Research, vol. 38, no. 19, pp. 4262–4270, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. N. F. Y. Tam and Y. S. Wong, “Effect of immobilized microalgal bead concentrations on wastewater nutrient removal,” Environmental Pollution, vol. 107, no. 1, pp. 145–151, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. X. G. Chen, Y. Dayong, and H. Zhaoji, “Experimental study on a three-phase outer circulating fluidized bed by a sequencing batch reactor of biofilm process,” in Seminar on Engineering Education Cooperation & Academic Research for Chinese-French Universities, p. 367370, 2005.