Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 846830, 7 pages
http://dx.doi.org/10.1155/2014/846830
Research Article

Dysfunction of Affective Network in Post Ischemic Stroke Depression: A Resting-State Functional Magnetic Resonance Imaging Study

1Department of Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantanxili, Dongcheng District, Beijing 100050, China
2Centre for Studies of Psychological Application, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
3State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
4Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
5Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantanxili, Dongcheng District, Beijing 100050, China

Received 25 January 2014; Revised 27 April 2014; Accepted 29 April 2014; Published 14 May 2014

Academic Editor: Lijun Bai

Copyright © 2014 Peiyao Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American Heart Association, “Stroke—1989. Recommendations on stroke prevention, diagnosis, and therapy. Report of the WHO task force on stroke and other cerebrovascular disorders,” vol. 20, no. 10, pp. 1407–1431, 1989. View at Publisher · View at Google Scholar
  2. L. Snaphaan, M. Rijpkema, I. Van Uden, G. Fernández, and F.-E. De Leeuw, “Reduced medial temporal lobe functionality in stroke patients: a functional magnetic resonance imaging study,” Brain, vol. 132, no. 7, pp. 1882–1888, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Jaillard, B. Naegele, S. Trabucco-Miguel, J. F. LeBas, and M. Hommel, “Hidden dysfunctioning in subacute stroke,” Stroke, vol. 40, no. 7, pp. 2473–2479, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. R. J. Davidson, D. A. Lewis, L. B. Alloy et al., “Neural and behavioral substrates of mood and mood regulation,” Biological Psychiatry, vol. 52, no. 6, pp. 478–502, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. G. M. S. Nys, M. J. E. van Zandvoort, H. B. van der Worp et al., “Early cognitive impairment predicts long-term depressive symptoms and quality of life after stroke,” Journal of the Neurological Sciences, vol. 247, no. 2, pp. 149–156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. K. Bhogal, R. Teasell, N. Foley, and M. Speechley, “Lesion location and poststroke depression: systematic review of the methodological limitations in the literature,” Stroke, vol. 35, no. 3, pp. 794–802, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. W. K. Tang, Y. K. Chen, J. Y. Lu et al., “Cerebral microbleeds and symptom severity of post-stroke depression: a magnetic resonance imaging study,” Journal of Affective Disorders, vol. 129, no. 1–3, pp. 354–358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. A. J. Carson, S. MacHale, K. Allen et al., “Depression after stroke and lesion location: a systematic review,” The Lancet, vol. 356, no. 9224, pp. 122–126, 2000. View at Google Scholar · View at Scopus
  9. M. Santos, E. Kövari, G. Gold et al., “The neuroanatomical model of post-stroke depression: towards a change of focus?” Journal of the Neurological Sciences, vol. 283, no. 1-2, pp. 158–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Singh, N. Herrmann, and S. E. Black, “The importance of lesion location in poststroke depression: a critical review,” Canadian Journal of Psychiatry, vol. 43, no. 9, pp. 921–927, 1998. View at Google Scholar · View at Scopus
  11. M. Greicius, “Resting-state functional connectivity in neuropsychiatric disorders,” Current Opinion in Neurology, vol. 21, no. 4, pp. 424–430, 2008. View at Google Scholar · View at Scopus
  12. Z. Wang, C. Yan, C. Zhao et al., “Spatial patterns of intrinsic brain activity in mild cognitive impairment and alzheimer's disease: a resting-state functional MRI study,” Human Brain Mapping, vol. 32, no. 10, pp. 1720–1740, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magnetic Resonance in Medicine, vol. 34, no. 4, pp. 537–541, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. M. De Luca, C. F. Beckmann, N. De Stefano, P. M. Matthews, and S. M. Smith, “fMRI resting state networks define distinct modes of long-distance interactions in the human brain,” NeuroImage, vol. 29, no. 4, pp. 1359–1367, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. D. Greicius, K. Supekar, V. Menon, and R. F. Dougherty, “Resting-state functional connectivity reflects structural connectivity in the default mode network,” Cerebral Cortex, vol. 19, no. 1, pp. 72–78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. R. N. Spreng, R. A. Mar, and A. S. N. Kim, “The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis,” Journal of Cognitive Neuroscience, vol. 21, no. 3, pp. 489–510, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Bluhm, P. Williamson, R. Lanius et al., “Resting state default-mode network connectivity in early depression using a seed region-of-interest analysis: decreased connectivity with caudate nucleus,” Psychiatry and Clinical Neurosciences, vol. 63, no. 6, pp. 754–761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Lassalle-Lagadec, I. Sibon, B. Dilharreguy, P. Renou, O. Fleury, and M. Allard, “Subacute default mode network dysfunction in the prediction of post-stroke depression severity,” Radiology, vol. 264, no. 1, pp. 218–224, 2012. View at Google Scholar
  19. A. Anand, Y. Li, Y. Wang et al., “Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study,” Biological Psychiatry, vol. 57, no. 10, pp. 1079–1088, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Anand, Y. Li, Y. Wang et al., “Antidepressant effect on connectivity of the mood-regulating circuit: an fMRI study,” Neuropsychopharmacology, vol. 30, no. 7, pp. 1334–1344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Anand, Y. Li, Y. Wang, M. J. Lowe, and M. Dzemidzic, “Resting state corticolimbic connectivity abnormalities in unmedicated bipolar disorder and unipolar depression,” Psychiatry Research—Neuroimaging, vol. 171, no. 3, pp. 189–198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Bush, P. Luu, and M. I. Posner, “Cognitive and emotional influences in anterior cingulate cortex,” Trends in Cognitive Sciences, vol. 4, no. 6, pp. 215–222, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. M. L. Phillips, W. C. Drevets, S. L. Rauch, and R. Lane, “Neurobiology of emotion perception II: implications for major psychiatric disorders,” Biological Psychiatry, vol. 54, no. 5, pp. 515–528, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. H. S. Mayberg, M. Liotti, S. K. Brannan et al., “Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness,” The American Journal of Psychiatry, vol. 156, no. 5, pp. 675–682, 1999. View at Google Scholar · View at Scopus
  25. W. C. Drevets, J. Savitz, and M. Trimble, “The subgenual anterior cingulate cortex in mood disorders,” CNS Spectrums, vol. 13, no. 8, pp. 663–681, 2008. View at Google Scholar · View at Scopus
  26. M. Hamilton, “A rating scale for depression,” Journal of Neurology, Neurosurgery, and Psychiatry, vol. 23, pp. 56–62, 1960. View at Google Scholar · View at Scopus
  27. Y. I. Sheline, J. L. Price, Z. Yan, and M. A. Mintun, “Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 24, pp. 11020–11025, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou et al., “Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain,” NeuroImage, vol. 15, no. 1, pp. 273–289, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. R. L. Buckner, J. R. Andrews-Hanna, and D. L. Schacter, “The brain's default network: anatomy, function, and relevance to disease,” Annals of the New York Academy of Sciences, vol. 1124, pp. 1–38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. I. M. Veer, C. F. Beckmann, M. J. van Tol et al., “Whole brain resting-state analysis reveals decreased functional connectivity in major depression,” Frontiers in Systems Neuroscience, vol. 4, article 41, 2010. View at Publisher · View at Google Scholar
  31. F. Dolcos, P. Kragel, L. Wang, and G. McCarthy, “Role of the inferior frontal cortex in coping with distracting emotions,” NeuroReport, vol. 17, no. 15, pp. 1591–1594, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Wang, K. S. LaBar, M. Smoski et al., “Prefrontal mechanisms for executive control over emotional distraction are altered in major depression,” Psychiatry Research—Neuroimaging, vol. 163, no. 2, pp. 143–155, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. K. R. Cullen, D. G. Gee, B. Klimes-Dougan et al., “A preliminary study of functional connectivity in comorbid adolescent depression,” Neuroscience Letters, vol. 460, no. 3, pp. 227–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Zhou, C. Yu, H. Zheng et al., “Increased neural resources recruitment in the intrinsic organization in major depression,” Journal of Affective Disorders, vol. 121, no. 3, pp. 220–230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Hama, H. Yamashita, M. Shigenobu et al., “Post-stroke affective or apathetic depression and lesion location: left frontal lobe and bilateral basal ganglia,” European Archives of Psychiatry and Clinical Neuroscience, vol. 257, no. 3, pp. 149–152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Zhang, J. Wang, Q. Wu et al., “Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder,” Biological Psychiatry, vol. 70, no. 4, pp. 334–342, 2011. View at Publisher · View at Google Scholar · View at Scopus