Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 852645, 20 pages
http://dx.doi.org/10.1155/2014/852645
Review Article

Potential Biomarkers and Their Applications for Rapid and Reliable Detection of Malaria

Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India

Received 29 April 2013; Accepted 11 February 2014; Published 2 April 2014

Academic Editor: Amogh A. Sahasrabuddhe

Copyright © 2014 Priyamvada Jain et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “WHO world malaria report 2012,” http://www.who.int/malaria/publications/world_malaria_report_2012/wmr2012_full_report.pdf.
  2. Centres for Disease Control and Prevention, http://www.cdc.gov/malaria/about/biology/parasites.html.
  3. S.-R. Choi, A. B. Beeler, A. Pradhan et al., “Generation of oxamic acid libraries: antimalarials and inhibitors of plasmodium falciparum lactate dehydrogenase,” Journal of Combinatorial Chemistry, vol. 9, no. 2, pp. 292–300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Chanda, B. Hamainza, S. Mulenga, V. Chalwe, C. Msiska, and E. Chizema-Kawesha, “Early results of integrated malaria control and implications for the management of fever in under-five children at a peripheral health facility: a case study of Chongwe rural health centre in Zambia,” Malaria Journal, vol. 8, no. 1, article 49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. C. C. Hume, G. Barnish, T. Mangal, L. Armázio, E. Streat, and I. Bates, “Household cost of malaria overdiagnosis in rural Mozambique,” Malaria Journal, vol. 7, article 33, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. I. Msellem, A. Mårtensson, G. Rotllant et al., “Influence of rapid malaria diagnostic tests on treatment and health outcome in fever patients, Zanzibar—a crossover validation study,” PLoS Medicine, vol. 6, no. 4, Article ID e1000070, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. B. S. Hulka, “Epidemiological studies using biological markers: issues for epidemiologists,” Cancer Epidemiology Biomarkers and Prevention, vol. 1, no. 1, pp. 13–19, 1991. View at Google Scholar · View at Scopus
  8. R. Frank and R. Hargreaves, “Clinical biomarkers in drug discovery and development,” Nature Reviews Drug Discovery, vol. 2, no. 7, pp. 566–580, 2003. View at Google Scholar · View at Scopus
  9. M. P. Dal-Bianco, K. B. Köster, U. D. Kombila et al., “High prevalence of asymptomatic Plasmodium falciparum infection in Gabonese adults,” American Journal of Tropical Medicine and Hygiene, vol. 77, no. 5, pp. 939–942, 2007. View at Google Scholar · View at Scopus
  10. M. D. Jensen, M. Conley, and L. D. Helstowski, “Culture of plasmodium falciparum: the role of pH, glucose, and lactate,” Journal of Parasitology, vol. 69, no. 6, pp. 1060–1067, 1983. View at Google Scholar · View at Scopus
  11. M. Fry, E. Webb, and M. Pudney, “Effect of mitochondrial inhibitors on adenosinetriphosphate levels in Plasmodium falciparum,” Comparative Biochemistry and Physiology B, vol. 96, no. 4, pp. 775–782, 1990. View at Publisher · View at Google Scholar · View at Scopus
  12. K. L. Olszewski and M. Llinás, “Central carbon metabolism of Plasmodium parasites,” Molecular and Biochemical Parasitology, vol. 175, no. 2, pp. 95–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Roth Jr., “Plasmodium falciparum carbohydrate metabolism: a connection between host cell and parasite,” Blood Cells, vol. 16, no. 2-3, pp. 453–460, 1990. View at Google Scholar · View at Scopus
  14. M. A. Pfaller, D. J. Krogstad, A. R. Parquette, and P. Nguyen Dinh, “Plasmodium falciparum: stage-specific lactate production in synchronized cultures,” Experimental Parasitology, vol. 54, no. 3, pp. 391–396, 1982. View at Google Scholar · View at Scopus
  15. Z. Bozdech, M. Llinás, B. L. Pulliam, E. D. Wong, J. Zhu, and J. L. DeRisi, “The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum,” PLoS Biology, vol. 1, no. 1, article e5, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. W. M. Brown, C. A. Yowell, A. Hoard et al., “Comparative structural analysis and kinetic properties of lactate dehydrogenases from the four species of human malarial parasites,” Biochemistry, vol. 43, no. 20, pp. 6219–6229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. C. R. Dunn, M. J. Banfield, J. J. Barker et al., “The structure of lactate dehydrogenase from Plasmodium falciparum reveals a new target for anti-malarial design,” Nature Structural Biology, vol. 3, no. 11, pp. 910–915, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. V. J. Winter, A. Cameron, R. Tranter, R. B. Sessions, and R. L. Brady, “Crystal structure of Plasmodium berghei lactate dehydrogenase indicates the unique structural differences of these enzymes are shared across the Plasmodium genus,” Molecular and Biochemical Parasitology, vol. 131, no. 1, pp. 1–10, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Hurdayal, I. Achilonu, D. Choveaux, T. H. T. Coetzer, and J. P. Dean Goldring, “Anti-peptide antibodies differentiate between plasmodial lactate dehydrogenases,” Peptides, vol. 31, no. 4, pp. 525–532, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. D. J. Bzik, B. A. Fox, and K. Gonyer, “Expression of Plasmodium falciparum lactate dehydrogenase in Escherichia coli,” Molecular and Biochemical Parasitology, vol. 59, no. 1, pp. 155–166, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Yang and S. F. Parmley, “A bradyzoite stage-specifically expressed gene of Toxoplasma gondii encodes a polypeptide homologous to lactate dehydrogenase,” Molecular and Biochemical Parasitology, vol. 73, no. 1-2, pp. 291–294, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Yang and S. F. Parmley, “Toxoplasma gondii expresses two distinct lactate dehydrogenase homologous genes during its life cycle in intermediate hosts,” Gene, vol. 184, no. 1, pp. 1–12, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. R. B. Sessions, V. Dewar, A. R. Clarke, and J. J. Holbrook, “A model of Plasmodium falciparum lactate dehydrogenase and its implications for the design of improved antimalarials and the enhanced detection of parasitaemia,” Protein Engineering, vol. 10, no. 4, pp. 301–306, 1997. View at Google Scholar · View at Scopus
  24. C. O. Hewitt, C. M. Eszes, R. B. Sessions et al., “A general method for relieving substrate inhibition in lactate dehydrogenases,” Protein Engineering, vol. 12, no. 6, pp. 491–496, 1999. View at Google Scholar · View at Scopus
  25. D. K. Shoemark, M. J. Cliff, R. B. Sessions, and A. R. Clarke, “Enzymatic properties of the lactate dehydrogenase enzyme from Plasmodium falciparum,” FEBS Journal, vol. 274, no. 11, pp. 2738–2748, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. S. Gomez, R. C. Piper, L. A. Hunsaker et al., “Substrate and cofactor specificity and selective inhibition of lactate dehydrogenase from the malarial parasite P. falciparum,” Molecular and Biochemical Parasitology, vol. 90, no. 1, pp. 235–246, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Chaikuad, V. Fairweather, R. Conners, T. Joseph-Horne, D. Turgut-Balik, and R. L. Brady, “Structure of lactate dehydrogenase from Plasmodium vivax: complexes with NADH and APADH,” Biochemistry, vol. 44, no. 49, pp. 16221–16228, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. S. G. Reddy, G. Scapin, and J. S. Blanchard, “Interaction of pyridine nucleotide substrates with Escherichia coli dihydrodipicolinate reductase: thermodynamic and structural analysis of binary complexes,” Biochemistry, vol. 35, no. 41, pp. 13294–13302, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. K. L. Kavanagh, R. A. Elling, and D. K. Wilson, “Structure of toxoplasma gondii LDH1: active-site differences from human lactate dehydrogenases and the structural basis for efficient APAD+ use,” Biochemistry, vol. 43, no. 4, pp. 879–889, 2004. View at Google Scholar · View at Scopus
  30. C. Dando, E. R. Schroeder, L. A. Hunsaker et al., “The kinetic properties and sensitivities to inhibitors of lactate dehydrogenases (LDH1 and LDH2) from Toxoplasma gondii: comparisons with pLDH from Plasmodium falciparum,” Molecular and Biochemical Parasitology, vol. 118, no. 1, pp. 23–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. R. L. Baldwin, “Structure and mechanism in protein science. A guide to enzyme catalysis and protein folding,” Protein Science, vol. 9, p. 207, 2000. View at Google Scholar
  32. R. E. Royer, L. M. Deck, N. M. Campos, L. A. Hunsaker, and D. L. Vender Jagt, “Biologically active derivatives of gossypol: synthesis and antimalarial activities of peri-acylated gossylic nitriles,” Journal of Medicinal Chemistry, vol. 29, no. 9, pp. 1799–1801, 1986. View at Google Scholar · View at Scopus
  33. L. M. Deck, R. E. Royer, B. B. Chamblee et al., “Selective inhibitors of human lactate dehydrogenases and lactate dehydrogenase from the malarial parasite Plasmodium falciparum,” Journal of Medicinal Chemistry, vol. 41, no. 20, pp. 3879–3887, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Cameron, J. Read, R. Tranter et al., “Identification and activity of a series of azole-based compounds with lactate dehydrogenase-directed antimalarial activity,” The Journal of Biological Chemistry, vol. 279, no. 30, pp. 31429–31439, 2004. View at Google Scholar
  35. R. Conners, F. Schambach, J. Read et al., “Mapping the binding site for gossypol-like inhibitors of Plasmodium falciparum lactate dehydrogenase,” Molecular and Biochemical Parasitology, vol. 142, no. 2, pp. 137–148, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. J. G. T. Menting, L. Tilley, L. W. Deady et al., “The antimalarial drug, chloroquine, interacts with lactate dehydrogenase from Plasmodium falciparum,” Molecular and Biochemical Parasitology, vol. 88, no. 1-2, pp. 215–224, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. J. A. Read, K. W. Wilkinson, R. Tranter, R. B. Sessions, and R. L. Brady, “Chloroquine binds in the cofactor binding site of Plasmodium falciparum lactate dehydrogenase,” Journal of Biological Chemistry, vol. 274, no. 15, pp. 10213–10218, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Kilejian, “A unique histidine rich polypeptide from the malaria parasite, Plasmodium lophurae,” Journal of Biological Chemistry, vol. 249, no. 14, pp. 4650–4655, 1974. View at Google Scholar · View at Scopus
  39. H. Zhao and J. H. Waite, “Proteins in load-bearing junctions: the Histidine-rich metal-binding protein of mussel byssus,” Biochemistry, vol. 45, no. 47, pp. 14223–14231, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. M. K. Burch, M. N. Blackburn, and W. T. Morgan, “Further characterization of the interaction of histidine-rich glycoprotein with heparin: evidence for the binding of two molecules of histidine-rich glycoprotein by high molecular weight heparin and for the involvement of histidine residues in heparin binding,” Biochemistry, vol. 26, no. 23, pp. 7477–7482, 1987. View at Google Scholar · View at Scopus
  41. R. Ge, R. M. Watt, X. Sun et al., “Expression and characterization of a histidine-rich protein, Hpn: potential for Ni2+ storage in Helicobacter pylori,” Biochemical Journal, vol. 393, no. 1, pp. 285–293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Scheel, K. Ziegelbauer, T. Kupke et al., “Hisactophilin, a histidine-rich actin-binding protein from Dictyostelium discoideum,” Journal of Biological Chemistry, vol. 264, no. 5, pp. 2832–2839, 1989. View at Google Scholar · View at Scopus
  43. R. J. Howard, S. Uni, and M. Aikawa, “Secretion of a malarial histidine-rich protein (Pf HRP II) from Plasmodium falciparum-infected erythrocytes,” Journal of Cell Biology, vol. 103, no. 4, pp. 1269–1277, 1986. View at Google Scholar · View at Scopus
  44. L. G. Pologe, A. Pavlovec, H. Shio, and J. V. Ravetch, “Primary structure and subcellular localization of the knob-associated histidine-rich protein of Plasmodium falciparum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 20, pp. 7139–7143, 1987. View at Google Scholar · View at Scopus
  45. J. H. Leech, J. W. Barnwell, and M. Aikawa, “Plasmodium falciparum malaria: association of knobs on the surface of infected erythrocytes with a histidine-rich protein and the erythrocyte skeleton,” Journal of Cell Biology, vol. 98, no. 4, pp. 1256–1264, 1984. View at Google Scholar · View at Scopus
  46. A. Lynn, S. Chandra, P. Malhotra, and V. S. Chauhan, “Heme binding and polymerization by Plasmodium falciparum histidine rich protein II: influence of pH on activity and conformation,” FEBS Letters, vol. 459, no. 2, pp. 267–271, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Kilejian, “Histidine rich protein as a model malaria vaccine,” Science, vol. 201, no. 4359, pp. 922–924, 1978. View at Google Scholar · View at Scopus
  48. H. D. Stahl, D. J. Kemp, P. E. Crewther et al., “Sequence of a cDNA encoding a small polymorphic histidine- and alanine-rich protein from Ptasmodium falciparum,” Nucleic Acids Research, vol. 13, no. 21, pp. 7837–7846, 1985. View at Publisher · View at Google Scholar · View at Scopus
  49. T. E. Wellems and R. J. Howard, “Homologous genes encode two distinct histidine-rich proteins in a cloned isolate of Plasmodium falciparum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 16, pp. 6065–6069, 1986. View at Google Scholar · View at Scopus
  50. E. P. Rock, K. Marsh, A. J. Saul et al., “Comparative analysis of the Plasmodium falciparum histidine-rich proteins HRP-I, HRP-II and HRP-III in malaria parasites of diverse origin,” Parasitology, vol. 95, part 2, pp. 209–227, 1987. View at Google Scholar · View at Scopus
  51. D. J. Sullivan Jr., Y. M. Ayala, and D. E. Goldberg, “An unexpected 5° untranslated intron in the P. falciparum genes for histidine-rich proteins II and III,” Molecular and Biochemical Parasitology, vol. 83, no. 2, pp. 247–251, 1996. View at Publisher · View at Google Scholar · View at Scopus
  52. M. E. Parra, C. B. Evans, and D. W. Taylor, “Identification of Plasmodium falciparum histidine-rich protein 2 in the plasma of humans with malaria,” Journal of Clinical Microbiology, vol. 29, no. 8, pp. 1629–1634, 1991. View at Google Scholar · View at Scopus
  53. M. Rodriguez-del Valle, I. A. Quakyi, J. Amuesi, J. T. Quaye, F. K. Nkrumah, and D. W. Taylor, “Detection of antigens and antibodies in the urine of humans with Plasmodium falciparum malaria,” Journal of Clinical Microbiology, vol. 29, no. 6, pp. 1236–1242, 1991. View at Google Scholar · View at Scopus
  54. V. Desakorn, A. M. Dondorp, K. Silamut et al., “Stage-dependent production and release of histidine-rich protein 2 by Plasmodium falciparum,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 99, no. 7, pp. 517–524, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. D. J. Sullivan Jr., I. Y. Gluzman, and D. E. Goldberg, “Plasmodium hemozoin formation mediated by histidine-rich proteins,” Science, vol. 271, no. 5246, pp. 219–222, 1996. View at Google Scholar · View at Scopus
  56. E. L. Schneider and M. A. Marletta, “Heme binding to the histidine-rich protein II from Plasmodium falciparum,” Biochemistry, vol. 44, no. 3, pp. 979–986, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. D. J. Barlow and J. M. Thornton, “Helix geometry in proteins,” Journal of Molecular Biology, vol. 201, no. 3, pp. 601–619, 1988. View at Google Scholar · View at Scopus
  58. M. E. Karpen, P. L. de Haseth, and K. E. Neet, “Differences in the amino acid distributions of 310-helices and α- helices,” Protein Science, vol. 1, no. 10, pp. 1333–1342, 1992. View at Google Scholar · View at Scopus
  59. C. Y. H. Choi, J. F. Cerda, C. Hsiu-An, G. T. Babcock, and M. A. Marletta, “Spectroscopic characterization of the heme-binding sites in Plasmodium falciparum histidine-rich protein 2,” Biochemistry, vol. 38, no. 51, pp. 16916–16924, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. A. V. Pandey, H. Bisht, V. K. Babbarwal, J. Srivastava, K. C. Pandey, and V. S. Chauhan, “Mechanism of malarial haem detoxification inhibition by chloroquine,” Biochemical Journal, vol. 355, no. 2, pp. 333–338, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Accardo, S. A.-L. Laurent, H. Mazarguil, M. Meyer, A. Robert, and B. Meunier, “Interaction of iron(II)-heme and artemisinin with a peptide mimic of Plasmodium falciparum HRP-II,” Journal of Inorganic Biochemistry, vol. 101, no. 11-12, pp. 1739–1747, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Ziegler, R. T. Chang, and D. W. Wright, “Multiple-antigenic peptides of histidine-rich protein II of Plasmodium falciparum: dendrimeric biomineralization templates,” Journal of the American Chemical Society, vol. 121, no. 11, pp. 2395–2400, 1999. View at Publisher · View at Google Scholar · View at Scopus
  63. C. E. Benedetti, J. Kobarg, T. A. Pertinhez et al., “Plasmodium falciparum histidine-rich protein II binds to actin, phosphatidylinositol 4,5-bisphosphate and erythrocyte ghosts in a pH-dependent manner and undergoes coil-to-helix transitions in anionic micelles,” Molecular and Biochemical Parasitology, vol. 128, no. 2, pp. 157–166, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Bosshart and M. Heinzelmann, “Endotoxin-neutralizing effects of histidine-rich peptides,” FEBS Letters, vol. 553, no. 1-2, pp. 135–140, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. M. F. Oliveira, J. R. Silva, M. Dansa-Petretski et al., “Haem detoxification by an insect,” Nature, vol. 400, no. 6744, pp. 517–518, 1999. View at Publisher · View at Google Scholar · View at Scopus
  66. M. M. Chen, L. Shi, and D. J. Sullivan Jr., “Haemoproteus and Schistosoma synthesize heme polymers similar to Plasmodium hemozoin and β-hematin,” Molecular and Biochemical Parasitology, vol. 113, no. 1, pp. 1–8, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. J. M. Pisciotta, E. L. Ponder, B. Fried, and D. Sullivan, “Hemozoin formation in Echinostoma trivolvis rediae,” International Journal for Parasitology, vol. 35, no. 10, pp. 1037–1042, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. A. F. G. Slater, W. J. Swiggard, B. R. Orton et al., “An iron-carboxylate bond links the heme units of malaria pigment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 2, pp. 325–329, 1991. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Pagola, P. W. Stephens, D. S. Bohle, A. D. Kosar, and S. K. Madsen, “The structure of malaria pigment β-haematin,” Nature, vol. 404, no. 6775, pp. 307–310, 2000. View at Publisher · View at Google Scholar · View at Scopus
  70. P. A. Adams, T. J. Egan, D. C. Ross, J. Silver, and P. J. Marsh, “The chemical mechanism of β-haematin formation studied by Mössbauer spectroscopy,” Biochemical Journal, vol. 318, no. 1, pp. 25–27, 1996. View at Google Scholar · View at Scopus
  71. K. Bendrat, B. J. Berger, and A. Cerami, “Haem polymerization in malaria,” Nature, vol. 378, no. 6553, pp. 138–139, 1995. View at Google Scholar · View at Scopus
  72. C. D. Fitch, G.-Z. Cai, Y.-F. Chen, and J. D. Shoemaker, “Involvement of lipids in ferriprotoporphyrin IX polymerization in malaria,” Biochimica et Biophysica Acta, vol. 1454, no. 1, pp. 31–37, 1999. View at Publisher · View at Google Scholar · View at Scopus
  73. K. E. Jackson, N. Klonis, D. J. P. Ferguson, A. Adisa, C. Dogovski, and L. Tilley, “Food vacuole-associated lipid bodies and heterogeneous lipid environments in the malaria parasite, Plasmodium falciparum,” Molecular Microbiology, vol. 54, no. 1, pp. 109–122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. J. M. Pisciotta, I. Coppens, A. K. Tripathi et al., “The role of eutral lipid nanospheres in Plasmodium falciparum haem crystallization,” Biochemical Journal, vol. 402, no. 1, pp. 197–204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. I. Solomonov, M. Osipova, Y. Feldman et al., “Crystal nucleation, growth, and morphology of the synthetic malaria pigment β-hematin and the effect thereon by quinoline additives: the malaria pigment as a target of various antimalarial drugs,” Journal of the American Chemical Society, vol. 129, no. 9, pp. 2615–2627, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. I. K. Srivastava, M. Schmidt, U. Certa, H. Döbeli, and L. H. Perrin, “Specificity and inhibitory activity of antibodies to Plasmodium falciparum aldolase,” Journal of Immunology, vol. 144, no. 4, pp. 1497–1503, 1990. View at Google Scholar · View at Scopus
  77. H. Döbeli, A. Trzeciak, D. Gillessen et al., “Expression, purification, biochemical characterization and inhibition of recombinant Plasmodium falciparum aldolase,” Molecular and Biochemical Parasitology, vol. 41, no. 2, pp. 259–268, 1990. View at Publisher · View at Google Scholar · View at Scopus
  78. H. Kim, U. Certa, H. Döbeli, P. Jakob, and W. G. J. Hol, “Crystal structure of fructose-1,6-bisphosphate aldolase from the human malaria parasite plasmodium falciparum,” Biochemistry, vol. 37, no. 13, pp. 4388–4396, 1998. View at Publisher · View at Google Scholar · View at Scopus
  79. H. L. Shear, C. C. Wanidworanun, and R. L. Nagel, “Antisense oligonucleotides targeting malarial aldolase inhibit the asexual erythrocytic stages of Plasmodium falciparum,” Molecular and Biochemical Parasitology, vol. 102, no. 1, pp. 91–101, 1999. View at Publisher · View at Google Scholar · View at Scopus
  80. C. E. Clayton, “Structure and regulated expression of genes encoding fructose biphosphate aldolase in Trypanosoma brucei,” The EMBO Journal, vol. 4, no. 11, pp. 2997–3003, 1985. View at Google Scholar · View at Scopus
  81. K. Henze, H. G. Morrison, M. L. Sogin, and M. M. Miklós Müller, “Sequence and phylogenetic position of a class II aldolase gene in the amitochondriate protist, Giardia lamblia,” Gene, vol. 222, no. 2, pp. 163–168, 1998. View at Publisher · View at Google Scholar · View at Scopus
  82. B. Knapp, E. Hundt, and H. A. Kupper, “Plasmodium falciparum aldolase: gene structure and localization,” Molecular and Biochemical Parasitology, vol. 40, no. 1, pp. 1–12, 1990. View at Google Scholar · View at Scopus
  83. B. Meier, H. Döbeli, and U. Certa, “Stage-specific expression of aldolase isoenzymes in the rodent malaria parasite Plasmodium berghei,” Molecular and Biochemical Parasitology, vol. 52, no. 1, pp. 15–27, 1992. View at Publisher · View at Google Scholar · View at Scopus
  84. N. Cloonan, K. Fischer, Q. Cheng, and A. Saul, “Aldolase genes of Plasmodium species,” Molecular and Biochemical Parasitology, vol. 113, no. 2, pp. 327–330, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. N. Lee, J. Baker, K. T. Andrews et al., “Effect of sequence variation in Plasmodium falciparum histidine-rich protein 2 on binding of specific monoclonal antibodies: implications for rapid diagnostic tests for malaria,” Journal of Clinical Microbiology, vol. 44, no. 8, pp. 2773–2778, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. J. T. Wagner, H. Lüdemann, P. M. Färber, F. Lottspeich, and R. L. Krauth-Siegel, “Glutamate dehydrogenase, the marker protein of Plasmodium falciparum cloning, expression and characterization of the malarial enzyme,” European Journal of Biochemistry, vol. 258, no. 2, pp. 813–819, 1998. View at Publisher · View at Google Scholar · View at Scopus
  87. C. Werner, M. T. Stubbs, R. L. Krauth-Siegel, and G. Klebe, “The crystal structure of Plasmodium falciparum glutamate dehydrogenase, a putative target for novel antimalarial drugs,” Journal of Molecular Biology, vol. 349, no. 3, pp. 597–607, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Zocher, K. Fritz-Wolf, S. Kehr, M. Fischer, S. Rahlfs, and K. Becker, “Biochemical and structural characterization of Plasmodium falciparum glutamate dehydrogenase 2,” Molecular and Biochemical Parasitology, vol. 183, no. 1, pp. 52–62, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Rodríguez-Acosta, N. G. Domínguez, I. Aguilar, and M. E. Girón, “Characterization of Plasmodium falciparum glutamate dehydrogenase-soluble antigen,” Brazilian Journal of Medical and Biological Research, vol. 31, pp. 1149–1155, 1998. View at Google Scholar
  90. Y. Li, Y.-S. Ning, L. Li, D.-D. Peng, W.-Q. Dong, and M. Li, “Preparation of a monoclonal antibodies against Plasmodium falciparum glutamate dehydrogenase and establishment of colloidal gold-immunochromatographic assay,” Di Yi Jun Yi Da Xue Xue Bao, vol. 25, no. 4, pp. 435–438, 2005. View at Google Scholar · View at Scopus
  91. N. W. Lucchi, V. Jain, N. O. Wilson, N. Singh, V. Udhayakumar, and J. K. Stiles, “Potential serological biomarkers of cerebral malaria,” Disease Markers, vol. 31, no. 6, pp. 327–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. H. B. Armah, N. O. Wilson, B. Y. Sarfo et al., “Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children,” Malaria Journal, vol. 6, article 147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. C. C. John, A. Panoskaltsis-Mortari, R. O. Opoka et al., “Cerebrospinal fluid cytokine levels and cognitive impairment in cerebral malaria,” American Journal of Tropical Medicine and Hygiene, vol. 78, no. 2, pp. 198–205, 2008. View at Google Scholar · View at Scopus
  94. F. E. Lovegrove, N. Tangpukdee, R. O. Opoka et al., “Serum angiopoietin-1 and -2 levels discriminate cerebral malaria from uncomplicated malaria and predict clinical outcome in African children,” PLoS ONE, vol. 4, no. 3, Article ID e4912, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. A. L. Conroy, E. I. Lafferty, F. E. Lovegrove et al., “Whole blood angiopoietin-1 and-2 levels discriminate cerebral and severe (non-cerebral) malaria from uncomplicated malaria,” Malaria Journal, vol. 8, no. 1, article 295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. C. Casals-Pascual, R. Idro, N. Gicheru et al., “High levels of erythropoietin are associated with protection against neurological sequelae in African children with cerebral malaria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 7, pp. 2634–2639, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. P. H. Jakobsen, S. Morris-Jones, A. Ronn et al., “Increased plasma concentrations of sICAM-1, sVCAM-1 and sELAM-1 in patients with Plasmodium falciparum or P. vivax malaria and association with disease severity,” Immunology, vol. 83, no. 4, pp. 665–669, 1994. View at Google Scholar · View at Scopus
  98. F. A. Kassa, M. T. Shio, M.-J. Bellemare, B. Faye, M. Ndao, and M. Olivier, “New inflammation-related biomarkers during malaria infection,” PLoS ONE, vol. 6, no. 10, Article ID e26495, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. C. Wenisch, S. Spitzauer, K. Florris-Linau et al., “Complement activation in severe Plasmodium falciparum malaria,” Clinical Immunology and Immunopathology, vol. 85, no. 2, pp. 166–171, 1997. View at Publisher · View at Google Scholar · View at Scopus
  100. J.-M. Freyssinet, “Cellular microparticles: what are they bad or good for?” Journal of Thrombosis and Haemostasis, vol. 1, no. 7, pp. 1655–1662, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. C. W. M. Haest, “Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane,” Biochimica et Biophysica Acta, vol. 694, no. 4, pp. 331–352, 1982. View at Google Scholar · View at Scopus
  102. S. C. Frasch, P. M. Henson, K. Nagaosa, M. B. Fessler, N. Borregaard, and D. L. Bratton, “Phospholipid flip-flop and phospholipid scramblase 1 (PLSCR1) co-localize to uropod rafts in formylated met-leu-phe-stimulated neutrophils,” Journal of Biological Chemistry, vol. 279, no. 17, pp. 17625–17633, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. L. Bernal-Mizrachi, W. Jy, J. J. Jimenez et al., “High levels of circulating endothelial microparticles in patients with acute coronary syndromes,” American Heart Journal, vol. 145, no. 6, pp. 962–970, 2003. View at Publisher · View at Google Scholar · View at Scopus
  104. H. A. M. Andree and Y. Nemerson, “Tissue factor: regulation of activity by flow and phospholipid surfaces,” Blood Coagulation and Fibrinolysis, vol. 6, no. 3, pp. 189–197, 1995. View at Google Scholar · View at Scopus
  105. R. C. Jacoby, J. T. Owings, J. Holmes, F. D. Battistella, R. C. Gosselin, and T. G. Paglieroni, “Platelet activation and function after trauma,” Journal of Trauma—Injury, Infection and Critical Care, vol. 51, no. 4, pp. 639–647, 2001. View at Google Scholar · View at Scopus
  106. V. Combes, T. E. Taylor, I. Juhan-Vague et al., “Circulating endothelial microparticles in Malawian children with severe falciparum malaria complicated with coma,” Journal of the American Medical Association, vol. 291, no. 21, pp. 2542–2544, 2004. View at Google Scholar · View at Scopus
  107. J. B. P. Mfonkeu, I. Gouado, H. F. Kuaté et al., “Elevated cell-specific microparticles are a biological marker for cerebral dysfunctions in human severe malaria,” PLoS ONE, vol. 5, no. 10, Article ID e13415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. R. S. Klein, E. Lin, B. Zhang et al., “Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis,” Journal of Virology, vol. 79, no. 17, pp. 11457–11466, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. B. Zhang, K. C. Ying, B. Lu, M. S. Diamond, and R. S. Klein, “CXCR3 mediates region-specific antiviral T cell trafficking within the central nervous system during west nile virus encephalitis,” Journal of Immunology, vol. 180, no. 4, pp. 2641–2649, 2008. View at Google Scholar · View at Scopus
  110. Y. Sui, R. Potula, N. Dhillon et al., “Neuronal apoptosis is mediated by CXCL10 overexpression in simian human immunodeficiency virus encephalitis,” American Journal of Pathology, vol. 164, no. 5, pp. 1557–1566, 2004. View at Google Scholar · View at Scopus
  111. E. Tjitra, S. Suprianto, M. Dyer, B. J. Currie, and N. M. Anstey, “Field evaluation of the ICT Malaria P.f/P.v immunochromatographic test for detection of Plasmodium falciparum and Plasmodium vivax in patients with a presumptive clinical diagnosis of malaria in eastern Indonesia,” Journal of Clinical Microbiology, vol. 37, no. 8, pp. 2412–2417, 1999. View at Google Scholar · View at Scopus
  112. D. P. Eisen and A. Saul, “Disappearance of pan-malarial antigen reactivity using the ICT Malaria P.f/P.v(TM) kit parallels decline of patent parasitaemia as shown by microscopy,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 94, no. 2, pp. 169–170, 2000. View at Google Scholar · View at Scopus
  113. B. Fleischer, “Editorial: 100 Years ago: Giemsa's solution for staining of plasmodia,” Tropical Medicine and International Health, vol. 9, no. 7, pp. 755–756, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. L. Goncalves, A. Subtil, M. R. de Oliveira, V. Rosario, P. W. Lee, and M. F. Shaio, “Bayesian latent class models in malaria diagnosis,” Plos ONE, vol. 7, Article ID e40633, 2012. View at Google Scholar
  115. S. Lee, K.-M. Song, W. Jeon, H. Jo, Y.-B. Shim, and C. Ban, “A highly sensitive aptasensor towards Plasmodium lactate dehydrogenase for the diagnosis of malaria,” Biosensors and Bioelectronics, vol. 35, no. 1, pp. 291–296, 2012. View at Publisher · View at Google Scholar · View at Scopus
  116. M. K. Sharma, V. K. Rao, G. S. Agarwal et al., “Highly sensitive amperometric immunosensor for detection of plasmodium falciparum histidine-rich protein 2 in serum of humans with malaria: comparison with a commercial kit,” Journal of Clinical Microbiology, vol. 46, no. 11, pp. 3759–3765, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. M. de Souza Castilho, T. Laube, H. Yamanaka, S. Alegret, and M. I. Pividori, “Magneto immunoassays for plasmodium falciparum histidine-rich protein 2 related to malaria based on magnetic nanoparticles,” Analytical Chemistry, vol. 83, no. 14, pp. 5570–5577, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. R. Piper, J. LeBras, L. Wentworth et al., “Immunocapture diagnostic assays for malaria using Plasmodium lactate dehydrogenase (pLDH),” American Journal of Tropical Medicine and Hygiene, vol. 60, no. 1, pp. 109–118, 1999. View at Google Scholar · View at Scopus
  119. M. K. Sharma, V. K. Rao, S. Merwyn, G. S. Agarwal, S. Upadhyay, and R. Vijayaraghavan, “A novel piezoelectric immunosensor for the detection of malarial Plasmodium falciparum histidine rich protein-2 antigen,” Talanta, vol. 85, no. 4, pp. 1812–1817, 2011. View at Publisher · View at Google Scholar · View at Scopus
  120. P. W. Lee, D. D. Ji, C. T. Liu, and H. S. Rampao, “Application of loop-mediated isothermal amplification for malaria diagnosis during a follow up study in Sao Tome,” Malaria Journal, vol. 11, article 408, 2012. View at Google Scholar
  121. B. Morassin, R. Fabre, A. Berry, and J.-F. Magnaval, “One year's experience with the polymerase chain reaction as a routine method for the diagnosis of imported malaria,” American Journal of Tropical Medicine and Hygiene, vol. 66, no. 5, pp. 503–508, 2002. View at Google Scholar · View at Scopus
  122. Y.-L. Lau, M.-Y. Fong, R. Mahmud et al., “Specific, sensitive and rapid detection of human plasmodium knowlesi infection by loop-mediated isothermal amplification (LAMP) in blood samples,” Malaria Journal, vol. 10, article 197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  123. B. Malleret, C. Claser, A. S. M. Ong et al., “A rapid and robust tri-color flow cytometry assay for monitoring malaria parasite development,” Scientific Reports, vol. 1, article 118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  124. A. B. Feldman, “Progress toward rapid malaria screening based on mass spectrometry,” Lab Tech, 2006, http://www.cli-online.com/fileadmin/artimg/progress-toward-rapid-malaria-screening-based-on-mass-spectrometry.pdf.
  125. S. K. Martin, G.-H. Rajasekariah, G. Awinda, J. Waitumbi, and C. Kifude, “Unified parasite lactate dehydrogenase and histidine-rich protein ELISA for quantification of Plasmodium falciparum,” American Journal of Tropical Medicine and Hygiene, vol. 80, no. 4, pp. 516–522, 2009. View at Google Scholar · View at Scopus
  126. H. Noedl, K. Yingyuen, A. Laoboonchai, M. Fukuda, J. Sirichaisinthop, and R. S. Miller, “Sensitivity and specificity of an antigen detection ELISA for malaria diagnosis,” American Journal of Tropical Medicine and Hygiene, vol. 75, no. 6, pp. 1205–1208, 2006. View at Google Scholar · View at Scopus
  127. A. Björkman and A. Mårtensson, “Risks and benefits of targeted malaria treatment based on rapid diagnostic test results,” Clinical Infectious Diseases, vol. 51, no. 5, pp. 512–514, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. A. Moody, “Rapid diagnostic tests for malaria parasites,” Clinical Microbiology Reviews, vol. 15, no. 1, pp. 66–78, 2002. View at Publisher · View at Google Scholar · View at Scopus
  129. J. Maltha, P. Gillet, E. Bottieau, L. Cnops, M. van Esbroeck, and J. Jacobs, “Evaluation of a rapid diagnostic test (CareStart Malaria HRP-2/pLDH (Pf/pan) Combo Test) for the diagnosis of malaria in a reference setting,” Malaria Journal, vol. 9, no. 1, article 171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. C. Wongsrichanalai, “Rapid diagnostic techniques for malaria control,” Trends in Parasitology, vol. 17, no. 7, pp. 307–309, 2001. View at Publisher · View at Google Scholar · View at Scopus
  131. T. A. Abeku, M. Kristan, C. Jones et al., “Determinants of the accuracy of rapid diagnostic tests in malaria case management: evidence from low and moderate transmission settings in the East African highlands,” Malaria Journal, vol. 7, article 202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. P. Jorgensen, L. Chanthap, A. Rebueno, R. Tsuyuoka, and D. Bell, “Malaria rapid diagnostic tests in tropical climates: the need for a cool chain,” American Journal of Tropical Medicine and Hygiene, vol. 74, no. 5, pp. 750–754, 2006. View at Google Scholar · View at Scopus
  133. P. L. Chiodini, K. Bowers, P. Jorgensen et al., “The heat stability of Plasmodium lactate dehydrogenase-based and histidine-rich protein 2-based malaria rapid diagnostic tests,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 101, no. 4, pp. 331–337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. M. Mayxay, S. Pukrittayakamee, K. Chotivanich, S. Looareesuwan, and N. J. White, “Persistence of Plasmodium falciparum HRP-2 in successfully treated acute falciparum malaria,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 95, no. 2, pp. 179–182, 2001. View at Publisher · View at Google Scholar · View at Scopus
  135. D. J. Kyabayinze, J. K. Tibenderana, G. W. Odong, J. B. Rwakimari, and H. Counihan, “Operational accuracy and comparative persistent antigenicity of HRP2 rapid diagnostic tests for Plasmodium falciparum malaria in a hyperendemic region of Uganda,” Malaria Journal, vol. 7, article 221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. H. Laferi, K. Kandel, and H. Pichler, “False positive dipstick test for malaria,” The New England Journal of Medicine, vol. 337, no. 22, pp. 1635–1636, 1997. View at Publisher · View at Google Scholar · View at Scopus
  137. J. Iqbal, A. Sher, and A. Rab, “Plasmodium falciparum histidine-rich protein 2-based immunocapture diagnostic assay for malaria: cross-reactivity with rheumatoid factors,” Journal of Clinical Microbiology, vol. 38, no. 3, pp. 1184–1186, 2000. View at Google Scholar · View at Scopus
  138. T. Jelinek, L. Amsler, M. P. Grobusch, and H. D. Nothdurft, “Self-use of rapid tests for malaria diagnosis by tourists,” The Lancet, vol. 354, no. 9190, p. 1609, 1999. View at Publisher · View at Google Scholar · View at Scopus
  139. C. J. Palmer, J. F. Lindo, W. I. Klaskala et al., “Evaluation of the optimal test for rapid diagnosis of Plasmodium vivax and Plasmodium falciparurn malaria,” Journal of Clinical Microbiology, vol. 36, no. 1, pp. 203–206, 1998. View at Google Scholar · View at Scopus
  140. J. Iqbal, A. Siddique, M. Jameel, and P. R. Hira, “Persistent histidine-rich protein 2, parasite lactate dehydrogenase, and panmalarial antigen reactivity after clearance of Plasmodium falciparum monoinfection,” Journal of Clinical Microbiology, vol. 42, no. 9, pp. 4237–4241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  141. N. Lee, J. Baker, D. Bell, J. McCarthy, and Q. Cheng, “Assessing the genetic diversity of the aldolase genes of Plasmodium falciparum and Plasmodium vivax and its potential effect on performance of aldolase-detecting rapid diagnostic tests,” Journal of Clinical Microbiology, vol. 44, no. 12, pp. 4547–4549, 2006. View at Publisher · View at Google Scholar · View at Scopus
  142. D. Gamboa, M.-F. Ho, J. Bendezu et al., “A large proportion of P. falciparum isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic tests,” PLoS ONE, vol. 5, no. 1, Article ID e8091, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. J. Maltha, D. Gamboa, J. Bendezu et al., “Rapid diagnostic tests for malaria diagnosis in the Peruvian Amazon: impact of pfhrp2 gene deletions and cross reactions,” PLoS ONE, vol. 7, Article ID e43094, 2012. View at Google Scholar
  144. J. Bendezu, A. Rosas, T. Grande et al., “Field evaluation of a rapid diagnostic test (Parascreen) for malaria diagnosis in the Peruvian Amazon,” Malaria Journal, vol. 9, no. 1, article 154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. M. T. Makler, C. J. Palmer, and A. L. Ager, “A review of practical techniques for the diagnosis of malaria,” Annals of Tropical Medicine and Parasitology, vol. 92, no. 4, pp. 419–433, 1998. View at Publisher · View at Google Scholar · View at Scopus
  146. E. Tjitra, S. Suprianto, J. McBroom, B. J. Currie, and N. M. Anstey, “Persistent ICT malaria P.f/P.v Panmalarial and HRP2 antigen reactivity after treatment of Plasmodium falciparum malaria is associated with gametocytemia and results in false-positive diagnoses of Plasmodium vivax in convalescence,” Journal of Clinical Microbiology, vol. 39, no. 3, pp. 1025–1031, 2001. View at Publisher · View at Google Scholar · View at Scopus
  147. N. Mariette, C. Barnadas, C. Bouchier, M. Tichit, and D. Ménard, “Country-wide assessment of the genetic polymorphism in Plasmodium falciparum and Plasmodium vivax antigens detected with rapid diagnostic tests for malaria,” Malaria Journal, vol. 7, article 219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. J. Baker, J. McCarthy, M. Gatton et al., “Genetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic tests,” Journal of Infectious Diseases, vol. 192, no. 5, pp. 870–877, 2005. View at Publisher · View at Google Scholar · View at Scopus
  149. T. Ramutton, I. Hendriksen, J. Mwanga-Amumpaire et al., “Sequence variation does not confound the measurement of plasma PfHRP2 concentration in African children presenting with severe malaria,” Malaria Journal, vol. 11, p. 276, 2012. View at Google Scholar
  150. I. C. E. Hendriksen, J. Mwanga-Amumpaire, L. von Seidlein et al., “Diagnosing severe falciparum malaria in parasitaemic African children: a prospective evaluation of plasma PfHRP2 measurement,” PLOS Medicine, vol. 9, Article ID e1001297, 2012. View at Google Scholar
  151. C. K. Murray and J. W. Bennett, “Rapid diagnosis of malaria,” Interdisciplinary Perspectives on Infectious Diseases, vol. 2009, Article ID 415953, 7 pages, 2009. View at Publisher · View at Google Scholar
  152. C. Wongsrichanalai, M. J. Barcus, S. Muth, A. Sutamihardja, and W. H. Wernsdorfer, “A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT),” The American Journal of Tropical Medicine and Hygiene, vol. 77, no. 6, pp. 119–127, 2007. View at Google Scholar · View at Scopus
  153. Y. Peng, J. Wu, J. Wang, W. Li, and S. Yu, “Study and evaluation of Wondfo rapid diagnostic kit based on nano-gold immunochromatography assay for diagnosis of Plasmodium falciparum,” Parasitology Research, vol. 110, pp. 1421–1425, 2012. View at Publisher · View at Google Scholar · View at Scopus
  154. C. Fogg, R. Twesigye, V. Batwala et al., “Assessment of three new parasite lactate dehydrogenase (pan-pLDH) tests for diagnosis of uncomplicated malaria,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 102, no. 1, pp. 25–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. D. P. Mawili-Mboumba, M. K. B. Akotet, E. B. Ngoungou, and M. Kombila, “Evaluation of rapid diagnostic tests for malaria case management in Gabon,” Diagnostic Microbiology and Infectious Disease, vol. 66, no. 2, pp. 162–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. H. Rakotonirina, C. Barnadas, R. Raherijafy et al., “Accuracy and reliability of malaria diagnostic techniques for guiding febrile outpatient treatment in malaria-endemic countries,” American Journal of Tropical Medicine and Hygiene, vol. 78, no. 2, pp. 217–221, 2008. View at Google Scholar · View at Scopus
  157. E. Nicastri, N. Bevilacqua, M. S. Schepisi et al., “Accuracy of malaria diagnosis by microscopy, rapid diagnostic test, and PCR methods and evidence of antimalarial Overprescription in non-severe febrile patients in two Tanzanian hospitals,” American Journal of Tropical Medicine and Hygiene, vol. 80, no. 5, pp. 712–717, 2009. View at Google Scholar · View at Scopus
  158. A. M. de Oliveira, J. Skarbinski, P. O. Ouma et al., “Performance of malaria rapid diagnostic tests as part of routine malaria case management in Kenya,” American Journal of Tropical Medicine and Hygiene, vol. 80, no. 3, pp. 470–474, 2009. View at Google Scholar · View at Scopus
  159. P. E. Avila, K. Kirchgatter, K. C. S. Brunialti, A. M. Oliveira, R. F. Siciliano, and S. M. Di Santi, “Evaluation of a rapid dipstick test, Malar-Check, for the diagnosis of Plasmodium falciparum malaria in Brazil,” Revista do Instituto de Medicina Tropical de Sao Paulo, vol. 44, no. 5, pp. 293–296, 2002. View at Google Scholar · View at Scopus
  160. D. C. Richardson, M. Ciach, K. J. Y. Zhong, I. Crandall, and K. C. Kain, “Evaluation of the Makromed dipstick assay versus PCR for diagnosis of Plasmodium falciparum malaria in returned travelers,” Journal of Clinical Microbiology, vol. 40, no. 12, pp. 4528–4530, 2002. View at Publisher · View at Google Scholar · View at Scopus
  161. C. Uguen, M. Rabodonirina, J.-J. de Pina et al., “ParaSight-F rapid manual diagnostic test of Plasmodium falciparum infection,” Bulletin of the World Health Organization, vol. 73, no. 5, pp. 643–649, 1995. View at Google Scholar · View at Scopus
  162. J. R. Forney, A. J. Magill, C. Wongsrichanalai et al., “Malaria rapid diagnostic devices: performance characteristics of the ParaSight F device determined in a multisite field study,” Journal of Clinical Microbiology, vol. 39, no. 8, pp. 2884–2890, 2001. View at Publisher · View at Google Scholar · View at Scopus
  163. N. Singh, A. Saxena, S. B. Awadhia, R. Shrivastava, and M. P. Singh, “Evaluation of a rapid diagnostic test for assessing the burden of malaria at delivery in India,” American Journal of Tropical Medicine and Hygiene, vol. 73, no. 5, pp. 855–858, 2005. View at Google Scholar · View at Scopus
  164. M. L. McMorrow, M. I. Masanja, E. Kahigwa, S. M. K. Abdulla, and S. P. Kachur, “Quality assurance of rapid diagnostic tests for malaria in routine patient care in rural Tanzania,” American Journal of Tropical Medicine and Hygiene, vol. 82, no. 1, pp. 151–155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. M. T. Schmidt and M. Schaechter, Topics and Ecological and Environmental Microbiology, Academic Press, New York, NY, USA, 2011.
  166. E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of aptamers as sensors,” Annual Review of Analytical Chemistry, vol. 2, pp. 241–264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  167. M. McKeague and C. M. DeRosa, “Challenges and opportunities for small molecule aptamer development,” Journal of Nucleic Acids, vol. 2012, Article ID 748913, 20 pages, 2012. View at Publisher · View at Google Scholar
  168. R. Ohnoa, H. Ohnukia, H. Wanga et al., “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosensors and Bioelectronics, vol. 40, pp. 422–426, 2013. View at Google Scholar
  169. K. Min, M. Cho, S.-Y. Han, Y.-B. Shim, J. Ku, and C. Ban, “A simple and direct electrochemical detection of interferon-γ using its RNA and DNA aptamers,” Biosensors and Bioelectronics, vol. 23, no. 12, pp. 1819–1824, 2008. View at Publisher · View at Google Scholar · View at Scopus
  170. G. S. Noland, N. Briones, and D. J. Sullivan Jr., “The shape and size of hemozoin crystals distinguishes diverse Plasmodium species,” Molecular and Biochemical Parasitology, vol. 130, no. 2, pp. 91–99, 2003. View at Publisher · View at Google Scholar · View at Scopus
  171. D. M. Newman, J. Heptinstall, R. J. Matelon et al., “A magneto-optic route toward the in vivo diagnosis of malaria: preliminary results and preclinical trial data,” Biophysical Journal, vol. 95, no. 2, pp. 994–1000, 2008. View at Publisher · View at Google Scholar · View at Scopus
  172. D. M. Newman, R. J. Matelon, M. L. Wears, and L. B. Savage, “The in vivo diagnosis of malaria: feasibility study into a magneto-optic fingertip probe,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 16, no. 3, pp. 573–580, 2010. View at Publisher · View at Google Scholar · View at Scopus