Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 853238, 10 pages
http://dx.doi.org/10.1155/2014/853238
Research Article

Genomic and Proteomic Characterization of Bacteriocin-Producing Leuconostoc mesenteroides Strains Isolated from Raw Camel Milk in Two Southwest Algerian Arid Zones

1Laboratory of Applied Microbiology, Department of Biology, Faculty of Sciences, Oran University, B.P. 16, 31100 Es-Senia, Oran, Algeria
2Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences/College of Biotechnology, University of Santiago de Compostela, Rúa Carballo Calero s/n, Campus Lugo, 27002 Lugo, Spain

Received 29 December 2013; Revised 10 March 2014; Accepted 11 March 2014; Published 7 April 2014

Academic Editor: Patrizia Messi

Copyright © 2014 Zineb Benmechernene et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Information on the microbiology of camel milk is very limited. In this work, the genetic characterization and proteomic identification of 13 putative producing bacteriocin Leuconostoc strains exhibiting antilisterial activity and isolated from camel milk were performed. DNA sequencing of the 13 selected strains revealed high homology among the 16S rRNA genes for all strains. In addition, 99% homology with Leuconostoc mesenteroides was observed when these sequences were analysed by the BLAST tool against other sequences from reference strains deposited in the Genbank. Furthermore, the isolates were characterized by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDITOF MS) which allowed for the identification of 2 mass peaks 6242 m/z and 5118 m/z that resulted to be specific to the species L. mesenteroides. Remarkably, the phyloproteomic tree provided more intraspecific information of L. mesenteroides than phylogenetic analysis. Accordingly, phyloproteomic analysis grouped L. mesenteroides strains into different subbranches, while all L. mesenteroides isolates were grouped in the same branch according to phylogenetic analysis. This study represents, to our knowledge, the first report on the use of MALDI-TOF MS on the identification of LAB isolated from camel milk.