Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 904985, 11 pages
http://dx.doi.org/10.1155/2014/904985
Research Article

Kinematic Metrics Based on the Virtual Reality System Toyra as an Assessment of the Upper Limb Rehabilitation in People with Spinal Cord Injury

1Biomechanics and Technical Aids Department, National Hospital for Spinal Cord Injury, Finca la Peraleda s/n, 45071 Toledo, Spain
2Indra Sistemas, Avenida de Bruselas, 33-35, Alcobendas, 28108 Madrid, Spain

Received 27 December 2013; Revised 11 February 2014; Accepted 20 February 2014; Published 23 April 2014

Academic Editor: Alessandro De Mauro

Copyright © 2014 Fernando Trincado-Alonso et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Wyndaele and J.-J. Wyndaele, “Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey?” Spinal Cord, vol. 44, no. 9, pp. 523–529, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. L. A. Harvey, J. Batty, R. Jones, and J. Crosbie, “Hand function of C6 and C7 tetraplegics 1–16 years following injury,” Spinal Cord, vol. 39, no. 1, pp. 37–43, 2001. View at Google Scholar · View at Scopus
  3. G. J. Snoek, M. J. Ijzerman, H. J. Hermens, D. Maxwell, and F. Biering-Sorensen, “Survey of the needs of patients with spinal cord injury: impact and priority for improvement in hand function in tetraplegics,” Spinal Cord, vol. 42, no. 9, pp. 526–532, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. J. C. Stewart, S.-C. Yeh, Y. Jung et al., “Intervention to enhance skilled arm and hand movements after stroke: a feasibility study using a new virtual reality system,” Journal of NeuroEngineering and Rehabilitation, vol. 4, article 21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Eng, E. Siekierka, P. Pyk et al., “Interactive visuo-motor therapy system for stroke rehabilitation,” Medical and Biological Engineering and Computing, vol. 45, no. 9, pp. 901–907, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Murphy, K. S. Sunnerhagen, B. Johnels, and C. Willén, “Three-dimensional kinematic motion analysis of a daily activity drinking from a glass: A Pilot Study,” Journal of NeuroEngineering and Rehabilitation, vol. 3, article 18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Dimbwadyo-Terrer, F. Trincado-Alonso, A. De los Reyes-Guzmán et al., “Clinical, functional and kinematic correlations using the virtual reality system toyra as upper limb rehabilitation tool in people with spinal cord injury,” in Proceedings of the International Congress on Neurotechnology, Electronics and Informatics (NEUROTECHNIX '13), A. R. Londral, P. Encarnaçao, and J. L. Pons, Eds., pp. 81–88, SCITEPRESS- Science and Technology, 2013.
  8. P. M. Fitts, “The information capacity of the human motor system in controlling the amplitude of movement,” Journal of Experimental Psychology, vol. 47, no. 6, pp. 381–391, 1954. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Bosecker, L. Dipietro, B. Volpe, and H. I. Krebs, “Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke,” Neurorehabilitation and neural repair, vol. 24, no. 1, pp. 62–69, 2010. View at Google Scholar · View at Scopus
  10. R. Colombo, F. Pisano, S. Micera et al., “Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb,” Neurorehabilitation and Neural Repair, vol. 22, no. 1, pp. 50–63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Dipietro, H. I. Krebs, S. E. Fasoli et al., “Changing motor synergies in chronic stroke,” Journal of Neurophysiology, vol. 98, no. 2, pp. 757–768, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Murphy, C. Willén, and K. S. Sunnerhagen, “Kinematic variables quantifying upper-extremity performance after stroke during reaching and drinking from a glass,” Neurorehabilitation and Neural Repair, vol. 25, no. 1, pp. 71–80, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. De los Reyes-Guzmán, A. Gil-Agudo, B. Peñasco-Martín, M. Solís-Mozos, A. del Ama-Espinosa, and E. Pérez-Rizo, “Kinematic analysis of the daily activity of drinking from a glass in a population with cervical spinal cord injury,” Journal of Neuroengineering and Rehabilitation, vol. 7, p. 41, 2010. View at Google Scholar
  14. S. Namdari, G. Yagnik, D. D. Ebaugh et al., “Defining functional shoulder range of motion for activities of daily living,” Journal of Shoulder and Elbow Surgery, vol. 21, no. 9, pp. 1177–1183, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. A. De los Reyes-Guzmán, I. Dimbwadyo-Terrer, S. Pérez-Nombela, F. Trincado-Alonso, D. Torricelli, and A. Gil-Agudo, “Objective metrics for functional evaluation of upper limb during the ADL of drinking: application in SCI,” in Proceedings of the 13th Mediterranean Conference on Medical and Biological Engineering and Computing, L. M. . Roa Moreno, Ed., vol. 41 of IFMBE Proceedings, pp. 1751–1754, Springer, 2014. View at Publisher · View at Google Scholar
  16. A. de los Reyes-Guzmán, S. Pérez-Nombela, I. Dimbwadyo-Terrer, and D. Torricelli, “Functional upper limb evaluation of daily activities in people with neurological disorders,” in Functional Upper Limb Evaluation of Daily Activities in People with Neurological Disorders, C. V. Jean Baptiste Giroux, Ed., pp. 55–76, Nova Science Publishers, 2013. View at Google Scholar
  17. J. H. Van Tuijl, Y. J. M. Janssen-Potten, and H. A. M. Seelen, “Evaluation of upper extremity motor function tests in tetraplegics,” Spinal Cord, vol. 40, no. 2, pp. 51–64, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Collin and D. Wade, “Assessing motor impairment after stroke: A Pilot Reliability Study,” Journal of Neurology Neurosurgery and Psychiatry, vol. 53, no. 7, pp. 576–579, 1990. View at Google Scholar · View at Scopus
  19. R. H. Jebsen, N. Taylor, R. B. Trieschmann, M. J. Trotter, and L. A. Howard, “An objective and standardized test of hand function,” Archives of Physical Medicine and Rehabilitation, vol. 50, no. 6, pp. 311–319, 1969. View at Google Scholar · View at Scopus
  20. M. H. Rabadi and F. M. Rabadi, “Comparison of the action research arm test and the fugl-meyer assessment as measures of upper-extremity motor weakness after stroke,” Archives of Physical Medicine and Rehabilitation, vol. 87, no. 7, pp. 962–966, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Uswatte, E. Taub, D. Morris, M. Vignolo, and K. McCulloch, “Reliability and validity of the upper-extremity motor activity log-14 for measuring real-world arm use,” Stroke, vol. 36, no. 11, pp. 2493–2496, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. E. W. A. Cacho, R. De Oliveira, R. L. Ortolan, R. Varoto, and A. Cliquet Jr., “Upper limb assessment in tetraplegia: clinical, functional and kinematic correlations,” International Journal of Rehabilitation Research, vol. 34, no. 1, pp. 65–72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Gil-Agudo, A. De los Reyes-Guzmán, I. Dimbwadyo-Terrer et al., “An inertial sensor-based motion tracking system for clinical upper limb rehabilitation,” Neural Regeneration Research, vol. 8, no. 19, pp. 1773–1782, 2013. View at Google Scholar
  24. R. J. Marino, T. Barros, F. Biering-Sorensen et al., “International standards for neurological classification of spinal cord injury,” The Journal of Spinal Cord Medicine, vol. 26, pp. S50–S56, 2003. View at Google Scholar · View at Scopus
  25. A. Catz, M. Itzkovich, E. Agranov, H. Ring, and A. Tamir, “SCIM—spinal cord independence measure: a new disability scale for patients with spinal cord lesions,” Spinal Cord, vol. 35, no. 12, pp. 850–856, 1997. View at Google Scholar · View at Scopus
  26. C. Rudhe and H. J. A. Van Hedel, “Upper extremity function in persons with tetraplegia: relationships between strength, capacity, and the spinal cord independence measure,” Neurorehabilitation and Neural Repair, vol. 23, no. 5, pp. 413–421, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Demeurisse, O. Demol, and E. Robaye, “Motor evaluation in vascular hemiplegia,” European Neurology, vol. 19, no. 6, pp. 382–389, 1980. View at Google Scholar · View at Scopus
  28. B. B. Hamilton, J. A. Laughlin, C. V. Granger, and R. M. Kayton, “Interrater agreement of the seven level Functional Independence Measure (FIM),” Archives of Physical Medicine and Rehabilitation, vol. 72, p. 790, 1991. View at Google Scholar
  29. J. Zariffa, N. Kapadia, J. L. K. Kramer et al., “Relationship between clinical assessments of function and measurements from an upper-limb robotic rehabilitation device in cervical spinal cord injury,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 20, no. 3, pp. 341–350, 2012. View at Google Scholar
  30. T. Fujiwara, Y. Hara, K. Akaboshi, and N. Chino, “Relationship between shoulder muscle strength and functional independence measure (FIM) score among C6 tetraplegics,” Spinal Cord, vol. 37, no. 1, pp. 58–61, 1999. View at Google Scholar · View at Scopus
  31. I. Laffont, E. Briand, O. Dizien et al., “Kinematics of prehension and pointing movements in C6 quadriplegic patients,” Spinal Cord, vol. 38, no. 6, pp. 354–362, 2000. View at Google Scholar · View at Scopus
  32. O. Celik, M. K. O'Malley, C. Boake, H. S. Levin, N. Yozbatiran, and T. A. Reistetter, “Normalized movement quality measures for therapeutic robots strongly correlate with clinical motor impairment measures,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, no. 4, pp. 433–444, 2010. View at Publisher · View at Google Scholar · View at Scopus