Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 906239, 8 pages
http://dx.doi.org/10.1155/2014/906239
Research Article

Anti-Proliferative Effect and Phytochemical Analysis of Cymbopogon citratus Extract

1Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Al-Moalim Mohamed Awad Center for Scientific Miracles of Prophetic Medicine, College of Medicine, Taibah University, 3001 Madinah, Saudi Arabia
3Department of Neurosurgery, College of Medicine, Taibah University, 3001 Madinah, Saudi Arabia
4Faculty of Medicine, P.O. Box 30001, Al-Madinah Al-Munawarah, Saudi Arabia

Received 30 December 2013; Revised 15 February 2014; Accepted 21 February 2014; Published 27 March 2014

Academic Editor: Yih-Shou Hsieh

Copyright © 2014 Mohammed F. Halabi and Bassem Y. Sheikh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, Cancer Fact Sheet No. 297, World Health Organization, Geneva, Switzerland, 2013.
  2. P. Trouillas, C.-A. Calliste, D.-P. Allais et al., “Antioxidant, anti-inflammatory and antiproliferative properties of sixteen water plant extracts used in the Limousin countryside as herbal teas,” Food Chemistry, vol. 80, no. 3, pp. 399–407, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Hofer, G. Schwach, N. Ghaffari Tabrizi-Wizsy, A. Sadjak, S. Sturm et al., “Christia vespertilionis plant extracts as novel antiproliferative agent against human neuroendocrine tumor cells,” Oncology Reports, vol. 29, no. 6, pp. 2219–2226, 2013. View at Publisher · View at Google Scholar
  4. J. Manosroi, P. Dhumtanom, and A. Manosroi, “Anti-proliferative activity of essential oil extracted from Thai medicinal plants on KB and P388 cell lines,” Cancer Letters, vol. 235, no. 1, pp. 114–120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Lewinsohn, N. Dudai, Y. Tadmor et al., “Histochemical localization of citral accumulation in lemongrass leaves (Cymbopogon citratus (DC.) Stapf., Poaceae),” Annals of Botany, vol. 81, no. 1, pp. 35–39, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Carlini, D. D. Contar, A. R. Silva-Filho, N. G. da Silveira-Filho, M. L. Frochtengarten, and O. F. Bueno, “Pharmacology of lemongrass (Cymbopogon citratus Stapf). I. Effects of teas prepared from the leaves on laboratory animals,” Journal of Ethnopharmacology, vol. 17, no. 1, pp. 37–64, 1986. View at Google Scholar · View at Scopus
  7. J. Cheel, C. Theoduloz, J. Rodríguez, and G. Schmeda-Hirschmann, “Free radical scavengers and antioxidants from lemongrass (Cymbopogon citratus (DC.) Stapf.),” Journal of Agricultural and Food Chemistry, vol. 53, no. 7, pp. 2511–2517, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. U. Vinitketkumnuen, R. Puatanachokchai, P. Kongtawelert, N. Lertprasertsuke, and T. Matsushima, “Antimutagenicity of lemon grass (Cymbopogon citratus Stapf) to various known mutagens in salmonella mutation assay,” Mutation Research/Genetic Toxicology, vol. 341, no. 1, pp. 71–75, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Santoro, M. Cardoso, L. Guimarães, J. Freire, and M. Soares, “Anti-proliferative effect of the essential oil of Cymbopogon citratus (DC) Stapf (lemongrass) on intracellular amastigotes, bloodstream trypomastigotes and culture epimastigotes of Trypanosoma cruzi (Protozoa: Kinetoplastida),” Parasitology, vol. 134, no. 11, pp. 1649–1656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Viana, T. Vale, R. Pinho, and F. Matos, “Antinociceptive effect of the essential oil from Cymbopogon citratus in mice,” Journal of Ethnopharmacology, vol. 70, no. 3, pp. 323–327, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. M. R. Santin, A. O. dos Santos, C. V. Nakamura, B. P. Dias Filho, I. C. P. Ferreira, and T. Ueda-Nakamura, “In vitro activity of the essential oil of Cymbopogon citratus and its major component (citral) on Leishmania amazonensis,” Parasitology Research, vol. 105, no. 6, pp. 1489–1496, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. V. C. Oliveira, D. M. Moura, J. A. Lopes, P. P. de Andrade, N. H. da Silva, and R. C. B. Q. Figueiredo, “Effects of essential oils from Cymbopogon citratus (DC) Stapf., Lippia sidoides Cham., and Ocimum gratissimum L. on growth and ultrastructure of Leishmania chagasi promastigotes,” Parasitology Research, vol. 104, no. 5, pp. 1053–1059, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. L. M. Baliña and K. Graupe, “The treatment of melasma: 20% azelaic acid versus 4% hydroquinone cream,” International Journal of Dermatology, vol. 30, no. 12, pp. 893–895, 1991. View at Google Scholar · View at Scopus
  14. A. Sperotto, D. Moura, V. Péres et al., “Cytotoxic mechanism of Piper gaudichaudianum Kunth essential oil and its major compound nerolidol,” Food and Chemical Toxicology, vol. 57, pp. 57–68, 2013. View at Publisher · View at Google Scholar
  15. S. Ying, M. Xiao, Y. Xianghong, and L. Yunpeng, “Effect of β-elemene on proliferation, cell cycle and angiogenesis of endothelial progenitor cells,” Chongqing Medicine, vol. 6, article 008, 2012. View at Google Scholar
  16. D. S. Bomfim, R. P. Ferraz, N. C. Carvalho et al., “Eudesmol isomers induce caspase-mediated apoptosis in human hepatocellular carcinoma HepG2 cells,” Basic & Clinical Pharmacology & Toxicology, vol. 113, no. 5, pp. 300–306, 2013. View at Publisher · View at Google Scholar
  17. D. Kaufmann, A. K. Dogra, and M. Wink, “Myrtenal inhibits acetylcholinesterase, a known Alzheimer target,” Journal of Pharmacy and Pharmacology, vol. 63, no. 10, pp. 1368–1371, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. L. H. Babu, S. Perumal, and M. P. Balasubramanian, “Myrtenal attenuates diethylnitrosamine-induced hepatocellular carcinoma in rats by stabilizing intrinsic antioxidants and modulating apoptotic and anti-apoptotic cascades,” Cellular Oncology, vol. 35, no. 4, pp. 269–283, 2012. View at Publisher · View at Google Scholar
  19. J. Hardie, R. Isaacs, J. A. Pickett, L. J. Wadhams, and C. M. Woodcock, “Methyl salicylate and (−)-(1R, 5S)-myrtenal are plant-derived repellents for black bean aphid, Aphis fabae Scop. (Homoptera: Aphididae),” Journal of Chemical Ecology, vol. 20, no. 11, pp. 2847–2855, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Şarer, S. Y. Toprak, B. Otlu, and R. Durmaz, “Composition and antimicrobial activity of the essential oil from Mentha spicata L. subsp. Spicata,” Journal of Essential Oil Research, vol. 23, no. 1, pp. 105–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Shahverdi, F. Rafii, F. Tavassoli, M. Bagheri, F. Attar, and A. Ghahraman, “Piperitone from Mentha longifolia var. chorodictya Rech F. reduces the nitrofurantoin resistance of strains of enterobacteriaceae,” Phytotherapy Research, vol. 18, no. 11, pp. 911–914, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Doković, V. Bulatović, B. Božić, M. V. Kataranovski, T. Zrakić, and N. N. Kovačević, “3,5-nonadiyne isolated from the rhizome of Cachrys ferulacea inhibits endogenous nitric oxide release by rat peritoneal macrophages,” Chemical and Pharmaceutical Bulletin, vol. 52, no. 7, pp. 853–854, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. R. S. Compagnone, K. Chavez, E. Mateu, G. Orsini, F. Arvelo, and A. I. Suárez, “Composition and cytotoxic activity of essential oils from Croton matourensis and Croton micans from Venezuela,” Records of Natural Products, vol. 4, no. 2, pp. 101–108, 2010. View at Google Scholar · View at Scopus
  24. H. Ping, G. Zhang, and G. Ren, “Antidiabetic effects of cinnamon oil in diabetic KK-Ay mice,” Food and Chemical Toxicology, vol. 48, no. 8-9, pp. 2344–2349, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Dai, L. Harinantenaina, P. J. Brodie et al., “Isolation and synthesis of two antiproliferative calamenene-type sesquiterpenoids from Sterculia tavia from the Madagascar Rain Forest,” Bioorganic & Medicinal Chemistry, vol. 20, no. 24, pp. 6940–6944, 2012. View at Publisher · View at Google Scholar
  26. J. Carroll, G. Paluch, J. Coats, and M. Kramer, “Elemol and amyris oil repel the ticks Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in laboratory bioassays,” Experimental and Applied Acarology, vol. 51, no. 4, pp. 383–392, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. E. S. Fernandes, G. F. Passos, R. Medeiros et al., “Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea,” European Journal of Pharmacology, vol. 569, no. 3, pp. 228–236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Tambe, H. Tsujiuchi, G. Honda, Y. Ikeshiro, and S. Tanaka, “Gastric cytoprotection of the non-steroidal anti-inflammatory sesquiterpene, β-caryophyllene,” Planta Medica, vol. 62, no. 5, pp. 469–470, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. C.-C. Chen, J.-H. Wu, N.-S. Yang et al., “Cytotoxic C35 terpenoid cryptotrione from the bark of Cryptomeria japonica,” Organic Letters, vol. 12, no. 12, pp. 2786–2789, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. H.-J. Gu, S.-S. Cheng, C.-G. Huang, W.-J. Chen, and S.-T. Chang, “Mosquito larvicidal activities of extractives from black heartwood-type Cryptomeria japonica,” Parasitology Research, vol. 105, no. 5, pp. 1455–1458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. K. J. Hartmans, P. Diepenhorst, W. Bakker, and L. G. Gorris, “The use of carvone in agriculture: sprout suppression of potatoes and antifungal activity against potato tuber and other plant diseases,” Industrial Crops and Products, vol. 4, no. 1, pp. 3–13, 1995. View at Google Scholar · View at Scopus
  32. M. Miyazawa, H. Shimamura, S.-I. Nakamura, and H. Kameoka, “Antimutagenic activity of (+)-β-eudesmol and paeonol from Dioscorea japonica,” Journal of Agricultural and Food Chemistry, vol. 44, no. 7, pp. 1647–1650, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Tsuneki, E.-L. Ma, S. Kobayashi et al., “Antiangiogenic activity of β-eudesmol in vitro and in vivo,” European Journal of Pharmacology, vol. 512, no. 2-3, pp. 105–115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Shiokawa, A. Akahane, H. Katayama, and T. Mitsunaga, “Use of adenosine antagonists in the prevention and treatment of pancreatitis and ulcer,” EP Patent 0497258 B1, 2002.
  35. T. Wang, R. Jonsdottir, and G. Ólafsdóttir, “Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds,” Food Chemistry, vol. 116, no. 1, pp. 240–248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. M. Salama, M. A. Abdulla, A. S. AlRashdi, S. Ismael, S. S. Alkiyumi, and A. Golbabapour, “Hepatoprotective effect of ethanolic extract of Curcuma longa on thioacetamide induced liver cirrhosis in rats,” BMC Complementary and Alternative Medicine, vol. 13, article 56, 2013. View at Publisher · View at Google Scholar
  37. D. M. Nagmoti, D. K. Khatri, P. R. Juvekar, and A. R. Juvekar, “Antioxidant activity free radical-scavenging potential of Pithecellobium dulce Benth seed extracts,” Free Radicals and Antioxidants, vol. 2, no. 2, pp. 37–43, 2012. View at Publisher · View at Google Scholar
  38. H. Khaledi, A. A. Alhadi, W. A. Yehye, H. M. Ali, M. A. Abdulla, and P. Hassandarvish, “Antioxidant, cytotoxic activities, and structure–activity relationship of gallic acid-based indole derivatives,” Archiv der Pharmazie, vol. 344, no. 11, pp. 703–709, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. L. C. A. Barbosa, U. A. Pereira, A. P. Martinazzo, C. R. Á. Maltha, R. R. Teixeira, and E. D. C. Melo, “Evaluation of the chemical composition of Brazilian commercial Cymbopogon citratus (D.C.) Stapf samples,” Molecules, vol. 13, no. 8, pp. 1864–1874, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Negrelle and E. Gomes, “Cymbopogon citratus (DC.) Stapf: chemical composition and biological activities,” Revista Brasileira de Plantas Medicinais, vol. 9, no. 1, pp. 80–92, 2007. View at Google Scholar · View at Scopus
  41. S. P. Piaru, S. Perumal, L. W. Cai et al., “Chemical composition, anti-angiogenic and cytotoxicity activities of the essential oils of Cymbopogan citratus (lemon grass) against colorectal and breast carcinoma cell lines,” Journal of Essential Oil Research, vol. 24, no. 5, pp. 453–459, 2012. View at Publisher · View at Google Scholar
  42. S. Y. Sah, C. M. Sia, S. K. Chang, Y. K. Ang, and H. S. Yim, “Antioxidant capacity and total phenolic content of lemon grass (Cymbopogon citratus) leave,” Annals Food Science and Technology, vol. 13, no. 2, pp. 150–155, 2012. View at Google Scholar
  43. P. H. Koh, R. A. M. Mokhtar, and M. Iqbal, “Antioxidant potential of Cymbopogon citratus extract: alleviation of carbon tetrachloride-induced hepatic oxidative stress and toxicity,” Human & Experimental Toxicology, vol. 31, no. 1, pp. 81–91, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Deetae, P. Parichanon, P. Trakunleewatthana, C. Chanseetis, and S. Lertsiri, “Antioxidant and anti-glycation properties of Thai herbal teas in comparison with conventional teas,” Food Chemistry, vol. 133, no. 3, pp. 953–959, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. I. Runnie, M. N. Salleh, S. Mohamed, R. J. Head, and M. Y. Abeywardena, “Vasorelaxation induced by common edible tropical plant extracts in isolated rat aorta and mesenteric vascular bed,” Journal of Ethnopharmacology, vol. 92, no. 2-3, pp. 311–316, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Saha, N. Lajis, D. Israf et al., “Evaluation of antioxidant and nitric oxide inhibitory activities of selected Malaysian medicinal plants,” Journal of Ethnopharmacology, vol. 92, no. 2-3, pp. 263–267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Konrad, H.-H. Müller, C. Lenz, H. Laubinger, G. Aumüller, and J. J. Lichius, “Antiproliferative effect on human prostate cancer cells by a stinging nettle root (Urtica dioica) extract,” Planta Medica, vol. 66, no. 1, pp. 44–47, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. N. Dudai, Y. Weinstein, M. Krup, T. Rabinski, and R. Ofir, “Citral is a new inducer of caspase-3 in tumor cell lines,” Planta Medica, vol. 71, no. 5, pp. 484–488, 2005. View at Publisher · View at Google Scholar · View at Scopus