Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 918209, 10 pages
http://dx.doi.org/10.1155/2014/918209
Research Article

Composition, In Vitro Antioxidant and Antimicrobial Activities of Essential Oil and Oleoresins Obtained from Black Cumin Seeds (Nigella sativa L.)

1Chemistry Department, DDU Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
2INQUINOA-CONICET, Instituto de Química Orgánica, Facultad de Bioquímica Química y Farmacia, Universidad Nacional de Tucumán, T4000INI San Miguel de Tucumán, Argentina

Received 6 April 2013; Accepted 24 October 2013; Published 6 February 2014

Academic Editor: Afaf K. El-Ansary

Copyright © 2014 Sunita Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Zengin, A. Aktumsek, G. O. Guler, Y. S. Cakmak, and E. Yildiztugay, “Antioxidant properties of methanolic extract and fatty acid composition of Centaurea urvillei DC. subsp. hayekiana Wagenitz,” Records of Natural Products, vol. 5, no. 2, pp. 123–132, 2011. View at Google Scholar · View at Scopus
  2. H. Lutterodt, M. Luther, M. Slavin et al., “Fatty acid profile, thymoquinone content, oxidative stability, and antioxidant properties of cold-pressed black cumin seed oils,” Food Science and Technology, vol. 43, no. 9, pp. 1409–1413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Shah and K. S. Ray, “Study on antioxidant and antimicrobial properties of black cumin (Nigella sativa Linn),” Journal of Food Science and Technology, vol. 40, no. 1, pp. 70–73, 2003. View at Google Scholar · View at Scopus
  4. I. Tekeoglu, A. Dogan, and L. Demiralp, “Effects of thymoquinone (volatile oil of black cumin) on rheumatoid arthritis in rat models,” Phytotherapy Research, vol. 20, no. 10, pp. 869–871, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Kruk, T. Michalska, K. Lichszteld, A. Kladna, and H. Y. Aboul-Enein, “The effect of thymol and its derivatives on reactions generating reactive oxygen species,” Chemosphere, vol. 41, no. 7, pp. 1059–1064, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Singh, P. Marimuthu, C. S. De Heluani, and C. Catalan, “Chemical constituents and antimicrobial and antioxidant potentials of essential oil and acetone extract of Nigella sativa seeds,” Journal of the Science of Food and Agriculture, vol. 85, no. 13, pp. 2297–2306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. A. Maisonneuve, European Pharmacopoeia, Part 1, Sainte-Ruffine, 1983.
  8. M. Burits and F. Bucar, “Antioxidant activity of Nigella sativaessential oil,” Phytotherapy Research, vol. 14, pp. 323–328, 2000. View at Google Scholar
  9. N. Ilaiyaraja and F. Khanum, “Nigella sativa L: a review of therapeutic applications,” Journal of Herbal Medicine and Toxicology, vol. 4, no. 2, pp. 1–8, 2010. View at Google Scholar
  10. E. A. Decker and B. Welch, “Role of ferritin as a lipid oxidation catalyst in muscle food,” Journal of Agricultural and Food Chemistry, vol. 38, no. 3, pp. 674–677, 1990. View at Google Scholar · View at Scopus
  11. W. Brand-Williams, M. E. Cuvelier, and C. Berset, “Use of a free radical method to evaluate antioxidant activity,” Food Science and Technology, vol. 28, no. 1, pp. 25–30, 1995. View at Google Scholar · View at Scopus
  12. V. L. Singleton and J. A. Rossi, “Colorimetry of total phenolics with phosphomolybdic-phosphotungstic as it reagents,” The American Journal of Enology and Viticulture, vol. 16, pp. 144–158, 1965. View at Google Scholar
  13. K. D. Economou, V. Oreopoulou, and C. D. Thomopoulos, “Antioxidant activity of some plant extracts of the family labiatae,” Journal of the American Oil Chemists Society, vol. 68, no. 2, pp. 109–113, 1991. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Singh, S. Maurya, M. P. de Lampasona, and C. A. N. Catalan, “A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents,” Food and Chemical Toxicology, vol. 45, no. 9, pp. 1650–1661, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Singh, I. P. S. Kapoor, P. Singh, C. S. de Heluani, M. P. de Lampasona, and C. A. N. Catalan, “Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale,” Food and Chemical Toxicology, vol. 46, no. 10, pp. 3295–3302, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. G. P. Rao and A. K. Shrivastava, “Toxicity of essential oils of higher plants against fungal pathogens of sugarcane,” in Current Trend in Sugarcane Pathology, G. P. Rao, A. G. Gillasple, P. P. Upadhaya, A. Bergamin, V. P. Agnihotri, and C. T. Chen, Eds., pp. 347–365, International Books and Periodicals Supply Service, Delhi, India, 1994. View at Google Scholar
  17. K. Ramadas, G. Suresh, N. Janarthanan, and S. Masilamani, “Antifungal activity of 1,3-disubstituted symmetrical and unsymmetrical thioureas,” Pesticide Science, vol. 52, no. 2, pp. 145–151, 1998. View at Google Scholar · View at Scopus
  18. NCCLS (National Committee for Clinical Laboratory Standards), Performance Standards for Antimicrobial Disc Susceptibility Test, 6th edition, 1997.
  19. V. Hajhashemi, A. Ghannadi, and H. Jafarabadi, “Black cumin seed essential oil, as a potent analgesic and antiinflammatory drug,” Phytotherapy Research, vol. 18, no. 3, pp. 195–199, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. P. J. Houghton, R. Zarka, B. De Las Heras, and J. R. S. Hoult, “Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation,” Planta Medica, vol. 61, no. 1, pp. 33–36, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. M. T. Sultan, M. S. Butt, F. M. Anjum, A. Jamil, S. Akhtar, and M. Nasir, “Nutritional profile of indigenous cultivar of black cumin seeds and antioxidant potential of its fixed and essential oil,” Pakistan Journal of Botany, vol. 41, no. 3, pp. 1321–1330, 2009. View at Google Scholar · View at Scopus
  22. S. Cheikh-Rouhou, S. Besbes, G. Lognay, C. Blecker, C. Deroanne, and H. Attia, “Sterol composition of black cumin (Nigella sativa L.) and Aleppo pine (Pinus halepensis Mill.) seed oils,” Journal of Food Composition and Analysis, vol. 21, no. 2, pp. 162–168, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. F. Ramadan, “Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): an overview,” International Journal of Food Science and Technology, vol. 42, no. 10, pp. 1208–1218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. T. D. Parker, D. A. Adams, K. Zhou, M. Harris, and L. Yu, “Fatty acid composition and oxidative stability of cold-pressed edible seed oils,” Journal of Food Science, vol. 68, no. 4, pp. 1240–1243, 2003. View at Google Scholar · View at Scopus
  25. J. Parry, L. Su, M. Luther et al., “Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils,” Journal of American Oil Chemical Society, vol. 83, pp. 847–854, 2006. View at Google Scholar · View at Scopus
  26. J. Parry, L. Su, M. Luther et al., “Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils,” Journal of Agricultural and Food Chemistry, vol. 53, no. 3, pp. 566–573, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. R. R. Sokal, Introduction to Biostatistics, W. H. Freeman, San Francisco, Calif, USA, 1973.
  28. H. Hosseinzadeh, S. Parvardeh, M. N. Asl, H. R. Sadeghnia, and T. Ziaee, “Effect of thymoquinone and Nigella sativa seeds oil on lipid peroxidation level during global cerebral ischemia-reperfusion injury in rat hippocampus,” Phytomedicine, vol. 14, no. 9, pp. 621–627, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Bourgou, A. Pichette, B. Marzouk, and J. Legault, “Bioactivities of black cumin essential oil and its main terpenes from Tunisia,” South African Journal of Botany, vol. 76, no. 2, pp. 210–216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. H. J. Harzallah, E. Noumi, K. Bekir et al., “Chemical composition, antibacterial and antifungal properties of Tunisian Nigella sativa fixed oil,” African Journal of Microbiology Research, vol. 6, no. 22, pp. 4675–4679, 2012. View at Google Scholar
  31. V. S. Deepa and P. S. Kumar, “Preliminary phytochemical investigations and in vitro antioxidant activity in selected parts of Andrographis spp,” Journal of Pharmacological Research, vol. 3, no. 9, pp. 2206–2210, 2010. View at Google Scholar
  32. M. Amensour, E. Sendra, A. Jamal, S. Bouhdid, J. A. Pérez-Alvarez, and J. Fernández-López, “Total phenolic content and antioxidant activity of myrtle (Myrtus communis) extracts,” Natural Product Communications, vol. 4, no. 6, pp. 819–824, 2009. View at Google Scholar · View at Scopus
  33. M. Di Nunzio, V. Valli, and A. Bordoni, “Pro- and anti-oxidant effects of polyunsaturated fatty acid supplementation in HepG2 cells,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 85, no. 3-4, pp. 121–127, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Singh, S. Maurya, C. Catalan, and M. P. de Lampasona, “Studies on essential oils, part 42: chemical, antifungal, antioxidant and sprout suppressant studies on ginger essential oil and its oleoresin,” Flavour and Fragrance Journal, vol. 20, no. 1, pp. 1–6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. T. S. El Alfy, H. M. El Fatatry, and M. A. Toama, “Isolation and structure assignment of an antimicrobial principle from the volatile oil of Nigella sativa L. seeds,” Pharmazie, vol. 30, no. 2, pp. 109–111, 1975. View at Google Scholar · View at Scopus
  36. M. A. Khan, “Chemical composition and medicinal properties of Nigella sativa Linn,” Inflammopharmacology, vol. 7, no. 1, pp. 15–35, 1999. View at Google Scholar · View at Scopus
  37. L. J. McGaw, A. K. Jäger, and J. van Staden, “Isolation of antibacterial fatty acids from Schotia brachypetala,” Fitoterapia, vol. 73, no. 5, pp. 431–433, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. A. R. McCutcheon, T. E. Roberts, E. Gibbons et al., “Antiviral screening of British Columbian medicinal plants,” Journal of Ethnopharmacology, vol. 49, no. 2, pp. 101–110, 1995. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Javed, A. A. Shahid, M. S. Haider et al., “Nutritional, phytochemical potential and pharmacological evaluation of Nigella Sativa (Kalonji) and Trachyspermum Ammi (Ajwain),” Medicinal Plants Research, vol. 6, no. 5, pp. 768–775, 2012. View at Google Scholar
  40. P. Rattanachaikunsopon and P. Phumkhachorn, “Assessment of factors influencing antimicrobial activity of carvacrol and cymene against Vibrio cholerae in food,” Journal of Bioscience and Bioengineering, vol. 110, no. 5, pp. 614–619, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Gilles, J. Zhao, M. An, and S. Agboola, “Chemical composition and antimicrobial properties of essential oils of three Australian Eucalyptus species,” Food Chemistry, vol. 119, no. 2, pp. 731–737, 2010. View at Publisher · View at Google Scholar · View at Scopus