Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 923564, 7 pages
http://dx.doi.org/10.1155/2014/923564
Research Article

Intraportal Infusion of Ghrelin Could Inhibit Glucose-Stimulated GLP-1 Secretion by Enteric Neural Net in Wistar Rat

1Department of Endocrinology and Metabolism, The 4th Hospital Affiliated to Harbin Medical University, No. 37, Yiyuan Street, Harbin 150000, China
2Department of Endocrinology and Metabolism, The 2nd Hospital Affiliated to Harbin Medical University, No. 246, Xuefu Road, Harbin 150080, China
3Department of Laboratory Medicine, The 2nd Hospital Affiliated to Harbin Medical University, No. 246, Xuefu Road, Harbin 150080, China

Received 20 June 2014; Accepted 4 August 2014; Published 26 August 2014

Academic Editor: Flavia Prodam

Copyright © 2014 Xiyao Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, and K. Kangawa, “Ghrelin is a growth-hormone-releasing acylated peptide from stomach,” Nature, vol. 402, no. 6762, pp. 656–660, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Wren, C. J. Small, C. R. Abbott et al., “Ghrelin causes hyperphagia and obesity in rats,” Diabetes, vol. 50, no. 11, pp. 2540–2547, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. A. M. Wren, L. J. Seal, M. A. Cohen et al., “Ghrelin enhances appetite and increases food intake in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 12, pp. 5992–5995, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Ariyasu, K. Takaya, T. Tagami et al., “Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans,” The Journal of Clinical Endocrinology & Metabolism, vol. 86, no. 10, pp. 4753–4758, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Shiiya, M. Nakazato, M. Mizuta et al., “Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 1, pp. 240–244, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Shimizu, N. Nagaya, T. Isobe et al., “Increased plasma ghrelin level in lung cancer cachexia,” Clinical Cancer Research, vol. 9, no. 2, pp. 774–778, 2003. View at Google Scholar · View at Scopus
  7. M. Tschöp, C. Weyer, P. A. Tataranni, V. Devanarayan, E. Ravussin, and M. L. Heiman, “Circulating ghrelin levels are decreased in human obesity,” Diabetes, vol. 50, no. 4, pp. 707–709, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Ceranowicz, Z. Warzecha, A. Dembinski et al., “Treatment with ghrelin accelerates the healing of acetic acid-induced gastric and duodenal ulcers in rats,” Journal of Physiology and Pharmacology, vol. 60, no. 1, pp. 87–98, 2009. View at Google Scholar · View at Scopus
  9. P. C. Konturek, T. Brzozowski, M. Engel et al., “Ghrelin ameliorates colonic inflammation. Role of nitric oxide and sensory nerves,” Journal of Physiology and Pharmacology, vol. 60, no. 2, pp. 41–47, 2009. View at Google Scholar · View at Scopus
  10. A. Karatug, O. Sacan, Z. M. Coskun et al., “Regulation of gene expression and biochemical changes in small intestine of newborn diabetic rats by exogenous ghrelin,” Peptides, vol. 33, no. 1, pp. 101–108, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Warzecha, P. Ceranowicz, A. Dembinski et al., “Therapeutic effect of ghrelin in the course of cerulein induced acute pancreatitis in rats,” Journal of Physiology and Pharmacology, vol. 61, no. 4, pp. 419–427, 2010. View at Google Scholar · View at Scopus
  12. M. Yuan, H. Hu, and C. Huang, “Myocardial angiogenesis after chronic ghrelin treatment in a rat myocardial infarction model,” Regulatory Peptides, vol. 179, no. 1-3, pp. 39–42, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Papotti, C. Ghè, P. Cassoni et al., “Growth hormone secretagogue binding sites in peripheral human tissues,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 10, pp. 3803–3807, 2000. View at Google Scholar · View at Scopus
  14. J. Tong, R. L. Prigeon, H. W. Davis et al., “Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy humans,” Diabetes, vol. 59, no. 9, pp. 2145–2151, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Cui, H. Ohnuma, M. Daimon et al., “Ghrelin infused into the portal vein inhibits glucose-stimulated insulin secretion in Wistar rats,” Peptides, vol. 29, no. 7, pp. 1241–1246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Hagemann, J. J. Holst, A. Gethmann, M. Banasch, W. E. Schmidt, and J. J. Meier, “Glucagon-like peptide 1 (GLP-1) suppresses ghrelin levels in humans via increased insulin secretion,” Regulatory Peptides, vol. 143, no. 1–3, pp. 64–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Radulescu, M. C. Gannon, and F. Q. Nuttall, “The effect on glucagon, glucagon-like peptide-1, total and acyl-ghrelin of dietary fats ingested with and without potato,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 7, pp. 3385–3391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. M. Pöykkö, E. Kellokoski, S. Hörkkö, H. Kauma, YA. Kesäniemi, and O. Ukkola, “Low plasma ghrelin is associated with insulin resistance, hypertension, and the prevalence of type 2 diabetes,” Diabetes, vol. 52, no. 10, pp. 2546–2553, 2003. View at Google Scholar
  19. A. S. Rocca and P. L. Brubaker, “Role of the vagus nerve in mediating proximal nutrient-induced glucagon- like peptide-1 secretion,” Endocrinology, vol. 140, no. 4, pp. 1687–1694, 1999. View at Google Scholar · View at Scopus