Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 926729, 10 pages
http://dx.doi.org/10.1155/2014/926729
Review Article

Autophagy, Warburg, and Warburg Reverse Effects in Human Cancer

1Institute of Biochemistry and Molecular Medicine, National Council for Scientific and Technological Research, School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 956 p5, 1113 Buenos Aires, Argentina
2Department of Pharmacology, CEMIC University Institute, 1113 Buenos Aires, Argentina

Received 23 April 2014; Accepted 24 July 2014; Published 12 August 2014

Academic Editor: Genichiro Ishii

Copyright © 2014 Claudio D. Gonzalez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. Cuervo, “Autophagy: in sickness and in health,” Trends in Cell Biology, vol. 14, no. 2, pp. 70–77, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Levine and D. J. Klionsky, “Development by self-digestion: molecular mechanisms and biological functions of autophagy,” Developmental Cell, vol. 6, no. 4, pp. 463–477, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. Yang and D. J. Klionsky, “An overview of the molecular mechanism of autophagy,” Current Topics in Microbiology and Immunology, vol. 335, no. 1, pp. 1–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. S. Vincent, T. T. Phan, A. Mukhopadhyay, H. Y. Lim, B. Halliwell, and K. P. Wong, “Human skin keloid fibroblasts display bioenergetics of cancer cells,” Journal of Investigative Dermatology, vol. 128, no. 3, pp. 702–709, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Pavlides, D. Whitaker-Menezes, R. Castello-Cros et al., “The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma,” Cell Cycle, vol. 8, no. 23, pp. 3984–4001, 2009. View at Google Scholar · View at Scopus
  6. T. Hara, K. Nakamura, M. Matsui et al., “Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice,” Nature, vol. 441, no. 7095, pp. 885–889, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Qu, Z. Zou, Q. Sun et al., “Autophagy gene-dependent clearance of apoptotic cells during embryonic development,” Cell, vol. 128, no. 5, pp. 931–946, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Pattingre and B. Levine, “Bcl-2 inhibition of autophagy: a new route to cancer?” Cancer Research, vol. 66, no. 6, pp. 2885–2888, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Shintani and D. J. Klionsky, “Autophagy in health and disease: a double-edged sword,” Science, vol. 306, no. 5698, pp. 990–995, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. D. J. Klionsky, “Autophagy,” Current Biology, vol. 15, no. 8, pp. 282–283, 2005. View at Google Scholar · View at Scopus
  11. D. J. Klionsky and S. D. Emr, “Autophagy as a regulated pathway of cellular degradation,” Science, vol. 290, no. 5497, pp. 1717–1721, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Mizushima, “The pleiotropic role of autophagy: from protein metabolism to bactericide,” Cell Death & Differentiation, vol. 12, no. 2, pp. 1535–1541, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. D. J. Klionsky, J. M. Cregg, W. A. Dunn Jr. et al., “A unified nomenclature for yeast autophagy-related genes,” Developmental Cell, vol. 5, no. 4, pp. 539–545, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. X. H. Liang, S. Jackson, M. Seaman et al., “Induction of autophagy and inhibition of tumorigenesis by beclin 1,” Nature, vol. 402, no. 6762, pp. 672–676, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Pattingre, A. Tassa, X. Qu et al., “Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy,” Cell, vol. 122, no. 6, pp. 927–939, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Liang, P. Feng, B. Ku et al., “Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG,” Nature Cell Biology, vol. 8, no. 7, pp. 688–698, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Kihara, T. Noda, N. Ishihara, and Y. Ohsumi, “Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase y sorting in Saccharomyces cerevisiae,” Journal of Cell Biology, vol. 153, no. 3, pp. 519–530, 2001. View at Google Scholar · View at Scopus
  18. C. He and D. J. Klionsky, “Regulation mechanisms and signaling pathways of autophagy,” Annual Review of Genetics, vol. 43, pp. 67–93, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Itakura and N. Mizushima, “Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins,” Autophagy, vol. 6, no. 6, pp. 764–776, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. I. Vaccaro, A. Ropolo, D. Grasso, and J. L. Iovanna, “A novel mammalian trans-membrane protein reveals an alternative initiation pathway for autophagy,” Autophagy, vol. 4, no. 3, pp. 388–390, 2008. View at Google Scholar · View at Scopus
  21. Z. Yang and D. J. Klionsky, “Mammalian autophagy: core molecular machinery and signaling regulation,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 124–131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Høyer-Hansen and M. Jäättelä, “AMP-activated protein kinase: a universal regulator of autophagy?” Autophagy, vol. 3, pp. 381–383, 2007. View at Google Scholar
  23. M. Zheng, Y. Wang, X. Wu et al., “Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1,” Nature Cell Biology, vol. 13, no. 3, pp. 263–272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Nobukuni, M. Joaquin, M. Roccio et al., “Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 40, pp. 14238–14243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Wullschleger, R. Loewith, and M. N. Hall, “TOR signaling in growth and metabolism,” Cell, vol. 124, no. 3, pp. 471–484, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Sancak, L. Bar-Peled, R. Zoncu, A. L. Markhard, S. Nada, and D. M. Sabatini, “Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids,” Cell, vol. 141, no. 2, pp. 290–303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. D. M. Gwinn, D. B. Shackelford, D. F. Egan et al., “AMPK phosphorylation of raptor mediates a metabolic checkpoint,” Molecular Cell, vol. 30, no. 2, pp. 214–226, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Levine, S. Sinha, and G. Kroemer, “Bcl-2 family members: dual regulators of apoptosis and autophagy,” Autophagy, vol. 4, no. 5, pp. 600–606, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Botti, M. Djavaheri-Mergny, Y. Pilatte, and P. Codogno, “Autophagy signaling and the cogwheels of cancer,” Autophagy, vol. 2, no. 2, pp. 67–73, 2006. View at Google Scholar · View at Scopus
  30. D. R. Green and R. Wang, “Calcium and energy: making the cake and eating it too?” Cell, vol. 142, no. 2, pp. 200–202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Tracy, B. C. Dibling, B. T. Spike, J. R. Knabb, P. Schumacker, and K. F. Macleod, “BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy,” Molecular and Cellular Biology, vol. 27, no. 17, pp. 6229–6242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. C. J. Sherr, “Autophagy by ARF: a Short Story,” Molecular Cell, vol. 22, no. 4, pp. 436–437, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Crighton, S. Wilkinson, and K. M. Ryan, “DRAM links autophagy to p53 and programmed cell death,” Autophagy, vol. 3, no. 1, pp. 72–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. H. G. Xia, L. Zhang, G. Chen et al., “Control of basal autophagy by calpain1 mediated cleavage of ATG5,” Autophagy, vol. 6, no. 1, pp. 61–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. K. R. Mills, M. Reginato, J. Debnath, B. Queenan, and J. S. Brugge, “Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 10, pp. 3438–3443, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. J. O. Pyo, M. H. Jang, Y. K. Kwon et al., “Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death,” The Journal of Biological Chemistry, vol. 280, no. 21, pp. 20722–20729, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Sarkar and D. C. Rubinsztein, “Inositol and IP3 levels regulate autophagy: biology and therapeutic speculations,” Autophagy, vol. 2, no. 2, pp. 132–134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Sarkar, E. O. Perlstein, S. Imarisio et al., “Small molecules enhance autophagy and reduce toxicity in Huntington's disease models,” Nature Chemical Biology, vol. 3, no. 6, pp. 331–338, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Mizushima, “The role of the Atg1/ULK1 complex in autophagy regulation,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 132–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Ropolo, D. Grasso, R. Pardo et al., “The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells,” Journal of Biological Chemistry, vol. 282, no. 51, pp. 37124–37133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Grasso, A. Ropolo, A. Lo Ré et al., “Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death,” Journal of Biological Chemistry, vol. 286, no. 10, pp. 8308–8324, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. A. E. Lo Ré, M. G. Fernández-Barrena, L. L. Almada et al., “Novel AKT1-GLI3-VMP1 pathway mediates KRAS oncogene-induced autophagy in cancer cells,” The Journal of Biological Chemistry, vol. 287, no. 30, pp. 25325–25334, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. M. I. Molejon, A. Ropolo, A. L. Re, V. Boggio, and M. I. Vaccaro, “The VMP1-Beclin 1 interaction regulates autophagy induction,” Scientific Reports, vol. 3, article 1055, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Tian, Z. Li, W. Hu et al., “C. elegans screen identifies autophagy genes specific to multicellular organisms,” Cell, vol. 141, no. 6, pp. 1042–1055, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Calvo-Garrido and R. Escalante, “Autophagy dysfunction and ubiquitin-positive protein aggregates in Dictyostelium cells lacking Vmp1,” Autophagy, vol. 6, no. 1, pp. 100–109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Pardo, A. Lo Ré, C. Archange et al., “Gemcitabine induces the VMP1-mediated autophagy pathway to promote apoptotic death in human pancreatic cancer cells,” Pancreatology, vol. 10, no. 1, pp. 19–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, “Autophagy fights disease through cellular self-digestion,” Nature, vol. 451, no. 7182, pp. 1069–1075, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Høyer-Hansen and M. Jäättelä, “Autophagy: an emerging target for cancer therapy,” Autophagy, vol. 4, pp. 574–580, 2008. View at Google Scholar
  49. S. Tóth, K. Nagy, Z. Pálfia, and G. Réz, “Cellular autophagic capacity changes during azaserine-induced tumour progression in the rat pancreas: up-regulation in all premalignant stages and down-regulation with loss of cycloheximide sensitivity of segregation along with malignant transformation,” Cell and Tissue Research, vol. 309, no. 3, pp. 409–416, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. X. Qu, J. Yu, G. Bhagat et al., “Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1809–1820, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. B. Levine, “Cell biology: autophagy and cancer,” Nature, vol. 446, pp. 745–747, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Mathew, V. Karantza-Wadsworth, and E. White, “Role of autophagy in cancer,” Nature Reviews Cancer, vol. 7, no. 12, pp. 961–967, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Kiffin, U. Bandyopadhyay, and A. M. Cuervo, “Oxidative stress and autophagy,” Antioxidants and Redox Signaling, vol. 8, no. 1-2, pp. 152–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Tang, R. Kang, K. M. Livesey, H. J. Zeh III, and M. T. Lotze, “High mobility group box 1 (HMGB1) activates an autophagic response to oxidative stress,” Antioxidants & Redox Signaling, vol. 15, no. 8, pp. 2185–2195, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Tang, R. Kang, K. M. Livesey et al., “Endogenous HMGB1 regulates autophagy,” Journal of Cell Biology, vol. 190, no. 5, pp. 881–892, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Kang, D. Tang, K. M. Livesey, N. E. Schapiro, M. T. Lotze, and H. J. Zeh, “The receptor for advanced glycation end-products (RAGE) protects pancreatic tumor cells against oxidative injury,” Antioxidants and Redox Signaling, vol. 15, no. 8, pp. 2175–2184, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Du, S. M. Martin, M. Levine et al., “Mechanisms of ascorbate-induced cytotoxicity in pancreatic cancer,” Clinical Cancer Research, vol. 16, no. 2, pp. 509–520, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Donadelli, I. Dando, T. Zaniboni et al., “Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism,” Cell Death and Disease, vol. 2, no. 4, article e152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Büchler, H. A. Reber, R. S. Lavey et al., “Tumor hypoxia correlates with metastatic tumor growth of pancreatic cancer in an orthotopic murine model,” Journal of Surgical Research, vol. 120, no. 2, pp. 295–303, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Izuishi, K. Kato, T. Ogura, T. Kinoshita, and H. Esumi, “Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy,” Cancer Research, vol. 60, no. 21, pp. 6201–6207, 2000. View at Google Scholar · View at Scopus
  61. H. Esumi, K. Izuishi, K. Kato et al., “Hypoxia and nitric oxide treatment confer tolerance to glucose starvation in a 5′-AMP-activated protein kinase-dependent manner,” Journal of Biological Chemistry, vol. 277, no. 36, pp. 32791–32798, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Fujii, S. Mitsunaga, M. Yamazaki et al., “Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome,” Cancer Science, vol. 99, no. 9, pp. 1813–1819, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. D. G. DeNardo, M. Johansson, and L. M. Coussens, “Inflaming gastrointestinal oncogenic programming,” Cancer Cell, vol. 14, no. 1, pp. 7–9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Abe and S. Yamagishi, “AGE-RAGE system and carcinogenesis,” Current Pharmaceutical Design, vol. 14, no. 10, pp. 940–945, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Arumugam, D. M. Simeone, K. Van Golen, and C. D. Logsdon, “S100P promotes pancreatic cancer growth, survival, and invasion,” Clinical Cancer Research, vol. 11, no. 15, pp. 5356–5364, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Kang, D. Tang, N. E. Schapiro et al., “The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival,” Cell Death and Differentiation, vol. 17, no. 4, pp. 666–676, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. R. J. Kewley, M. L. Whitelaw, and A. Chapman-Smith, “The mammalian basic helix-loop-helix/PAS family of transcriptional regulators,” The International Journal of Biochemistry & Cell Biology, vol. 36, no. 2, pp. 189–204, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. M. B. Azad, Y. Chen, E. S. Henson et al., “Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3,” Autophagy, vol. 4, no. 2, pp. 195–204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. T. R. Burton and S. B. Gibson, “The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death,” Cell Death and Differentiation, vol. 16, no. 4, pp. 515–523, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Okami, D. M. Simeone, and C. D. Logsdon, “Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer,” Cancer Research, vol. 64, no. 15, pp. 5338–5346, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. P. C. Mahon, P. Baril, V. Bhakta et al., “S100A4 contributes to the suppression of BNIP3 expression, chemoresistance, and inhibition of apoptosis in pancreatic cancer,” Cancer Research, vol. 67, no. 14, pp. 6786–6795, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Abe, M. Toyota, H. Suzuki et al., “Upregulation of BNIP3 by 5-aza-2′-deoxycytidine sensitizes pancreatic cancer cells to hypoxia-mediated cell death,” Journal of Gastroenterology, vol. 40, no. 5, pp. 504–510, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Guan, P. E. Stromhaug, M. D. George et al., “Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris,” Molecular Biology of the Cell, vol. 12, no. 12, pp. 3821–3838, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Proikas-Cezanne, S. Waddell, A. Gaugel, T. Frickey, A. Lupas, and A. Nordheim, “WIPI-1α (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy,” Oncogene, vol. 23, no. 58, pp. 9314–9325, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. O. Warburg, “On the origin of cancer cells,” Science, vol. 123, no. 3191, pp. 309–314, 1956. View at Publisher · View at Google Scholar · View at Scopus
  76. D. Nelson and D. Cox, Lehninger Principles of Biochemistry, chapter 14, WH Freeman and Co., New York, NY, USA, 2008.
  77. R. Bartrons and J. Caro, “Hypoxia, glucose metabolism and the Warburg's effect,” Journal of Bioenergetics and Biomembranes, vol. 39, no. 3, pp. 223–229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. V. Gogvadze, B. Zhivotovsky, and S. Orrenius, “The Warburg effect and mitochondrial stability in cancer cells,” Molecular Aspects of Medicine, vol. 31, no. 1, pp. 60–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Vincent, “Cancer: a de-repression of a default survival program common to all cells?” BioEssays, vol. 34, no. 1, pp. 72–82, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. S. J. Bensinger and H. R. Christofk, “New aspects of the Warburg effect in cancer cell biology,” Seminars in Cell and Developmental Biology, vol. 23, no. 4, pp. 352–361, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Bensaad, A. Tsuruta, M. A. Selak et al., “TIGAR, a p53-inducible regulator of glycolysis and apoptosis,” Cell, vol. 126, no. 1, pp. 107–120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. L. M. Nilsson, T. Z. Plym Forshell, S. Rimpi et al., “Mouse genetics suggests cell-context dependency for myc-regulated metabolic enzymes during tumorigenesis,” PLoS Genetics, vol. 8, no. 3, Article ID e1002573, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. U. E. Martinez-Outschoorn, S. Pavlides, D. Whitaker-Menezes et al., “Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors,” Cell Cycle, vol. 9, no. 12, pp. 2423–2433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. M. P. Lisanti, U. E. Martinez-Outschoorn, B. Chiavarina et al., “Understanding the “lethal” drivers of tumor-stroma co-evolution: emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment,” Cancer Biology and Therapy, vol. 10, no. 6, pp. 537–542, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. T. Smith-Vikos, “A report of the James Watson lecture at Yale University,” The Yale Journal of Biology and Medicine, vol. 85, no. 3, pp. 417–419, 2012. View at Google Scholar · View at Scopus
  86. S. del Barco, A. Vazquez-Martin, S. Cufí et al., “Metformin: multi-faceted protection against cancer,” Oncotarget, vol. 2, no. 12, pp. 896–917, 2011. View at Google Scholar · View at Scopus
  87. B. Chiavarina, D. Whitaker-Menezes, U. E. Martinez-Outschoorn et al., “Pyruvate kinase expression (PKM1 and PKM2) in cancer associated fibroblasts drives stromal nutrient production and tumor growth,” Cancer Biology and Therapy, vol. 12, no. 12, pp. 1101–1113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Vazquez-Martin, B. Corominas-Faja, S. Cufi et al., “The mitochondrial H+-ATP synthase and the lipogenic switch: new core components of metabolic reprogramming in induced pluripotent stem (iPS) cells,” Cell Cycle, vol. 12, no. 2, pp. 207–218, 2013. View at Publisher · View at Google Scholar · View at Scopus
  89. V. Rausch, L. Liu, A. Apel et al., “Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment,” The Journal of Pathology, vol. 227, no. 3, pp. 325–335, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. R. K. Amaravadi, J. Lippincott-Schwartz, X. Yin et al., “Principles and current strategies for targeting autophagy for cancer treatment,” Clinical Cancer Research, vol. 17, no. 4, pp. 654–666, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Choi, H. Kim do, W. H. Jung, and J. S. Koo, “Metabolic interaction between cancer cells and stromal cells according to breast cancer molecular subtype,” Breast Cancer Research, vol. 15, no. 5, article R78, 2013. View at Google Scholar
  92. J. D. Mancias and A. C. Kimmelman, “Targeting autophagy addiction in cancer,” Oncotarget, vol. 2, no. 12, pp. 1302–1306, 2011. View at Google Scholar · View at Scopus
  93. B. Ewald, D. Sampath, and W. Plunkett, “Nucleoside analogs: molecular mechanisms signaling cell death,” Oncogene, vol. 27, no. 50, pp. 6522–6537, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. I. Vivanco and C. L. Sawyers, “The phosphatidylinositol 3-kinase-AKT pathway in human cancer,” Nature Reviews Cancer, vol. 2, no. 7, pp. 489–501, 2002. View at Publisher · View at Google Scholar · View at Scopus
  95. A. S. N. Jackson, P. Jain, G. R. Watkins et al., “Efficacy and tolerability of limited field radiotherapy with concurrent capecitabine in local advanced pancreatic cancer,” Clinical Oncology, vol. 22, no. 7, pp. 570–577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. R. Sheikh, N. Walsh, M. Clynes, R. O'connor, and R. McDermott, “Challenges of drug resistance in the management of pancreatic cancer,” Expert Review of Anticancer Therapy, vol. 10, no. 10, pp. 1647–1661, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. T. Conroy, F. Desseigne, M. Ychoy et al., “Randomized phase III trial comparing FOLFIRINOX (F: 5FU/leucovorin [LV], irinotecan [I], and oxaliplatin [O]) versus gemcitabine (G) as first-line treatment for metastatic pancreatic adenocarcinoma (MPA): preplanned interim analysis results of the PRODIGE 4/ACCORD 11 trial,” Journal of Clinical Oncology, vol. 28, supplement 15s, abstract 4010, 2010. View at Google Scholar
  98. W. Tung, Y. Wang, P. W. Gout, D. M. Liu, and M. Gleave, “Use of irinotecan for treatmentof small cell carcinoma of the prostate,” Prostate, vol. 71, no. 7, pp. 675–681, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. M. I. Vaccaro, C. D. Gonzalez, S. Alvarez, and A. Ropolo, “Modulating autophagy and the ‘reverse warburg effect’,” in Tumor Metabolome Targeting and Drug Development, Cancer Drug Discovery and Development, S. Kanner, Ed., Springer, New York, NY, USA, 2014. View at Google Scholar