Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 934182, 10 pages
http://dx.doi.org/10.1155/2014/934182
Research Article

Effect of Chromium on Antioxidant Potential of Catharanthus roseus Varieties and Production of Their Anticancer Alkaloids: Vincristine and Vinblastine

1Department of Botany, University of Lucknow, Lucknow 226 007, India
2Pharmacognosy & Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226 001, India

Received 25 April 2013; Revised 11 January 2014; Accepted 18 January 2014; Published 10 March 2014

Academic Editor: Sudhir Sopory

Copyright © 2014 Vartika Rai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. C. Adriano, Trace Elements in the Terrestrial Environment, Springer, New York, NY, USA, 1986.
  2. G. E. Trease and G. E. Evans, Text Book of Pharmacognosy, Bailliera Tindall, London, UK, 2nd edition, 1989.
  3. A. Mithöfer, B. Schulze, and W. Boland, “Biotic and heavy metal stress response in plants: evidence for common signals,” FEBS Letters, vol. 566, no. 1–3, pp. 1–5, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Rai, S. Khatoon, S. S. Bisht, and S. Mehrotra, “Effect of cadmium on growth, ultramorphology of leaf and secondary metabolites of Phyllanthus amarus Schum. & Thonn,” Chemosphere, vol. 61, no. 11, pp. 1644–1650, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Rai, P. Vajpayee, S. N. Singh, and S. Mehrotra, “Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L.,” Plant Science, vol. 167, no. 5, pp. 1159–1169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Levy, “Natural and induced genetic variation in the biosynthesis of alkaloids and other secondary metabolites,” in Improvement of Oil Seed and Industrial Crops By Induced Mutations, pp. 213–222, IAEA, Vienna, Austria, 1982. View at Google Scholar
  7. R. van der Heijden, D. I. Jacobs, W. Snoeijer, D. Hallard, and R. Verpoorte, “The Catharanthus alkaloids: pharmacognosy and biotechnology,” Current Medicinal Chemistry, vol. 11, no. 5, pp. 607–628, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Aslam, S. H. Khan, Z. H. Siddiqui et al., “Catharanthus roseus (L.) G. Don. An important drug: it’s applications and production,” Pharmacie Globale (IJCP), vol. 4, no. 12, pp. 1–16, 2010, http://www.pharmacie-globale.info/. View at Google Scholar
  9. J. Barnhart, “Occurrences, uses, and properties of chromium,” Regulatory Toxicology and Pharmacology, vol. 26, no. 1, part 2, pp. S3–S7, 1997. View at Google Scholar · View at Scopus
  10. P. Chandra, S. Sinha, and U. N. Rai, “Bioremediation of Cr from water and soil by vascular aquatic plants,” in Phytoremediation of Soil and Water Contaminants, E. L. Kruger, T. A. Anderson, and J. R. Coats, Eds., vol. 664 of ACS Symposium Series, pp. 274–2782, American Chemical Society, Washington, DC, USA, 1997. View at Google Scholar
  11. P. R. H. Moreno, R. van der Heijden, and R. Verpoorte, “Cell and tissue cultures of Catharanthus roseus: a literature survey. II.Updating from 1988 to 1993,” Plant Cell, Tissue and Organ Culture, vol. 42, no. 1, pp. 1–25, 1995. View at Google Scholar · View at Scopus
  12. D. I. Jacobs, R. van der Heijden, and R. Verpoorte, “Proteomics in plant biotechnology and secondary metabolism reaserch,” Phytochemical Analysis, vol. 11, no. 5, pp. 277–287, 2000. View at Google Scholar · View at Scopus
  13. D. I. Arnon, “Copper enzyme in isolated chloroplast: polyphenol oxidase in Beta vulgaris,” Plant Physiology, vol. 130, pp. 267–272, 1949. View at Google Scholar
  14. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  15. M. K. Gaitonde, “A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids,” Biochemical Journal, vol. 104, no. 2, pp. 627–633, 1967. View at Google Scholar · View at Scopus
  16. L. S. Bates, R. P. Waldren, and I. D. Teare, “Rapid determination of free proline for water-stress studies,” Plant and Soil, vol. 39, no. 1, pp. 205–207, 1973. View at Publisher · View at Google Scholar · View at Scopus
  17. G. L. Ellman, “Tissue sulfhydryl groups,” Archives of Biochemistry and Biophysics, vol. 82, no. 1, pp. 70–77, 1959. View at Google Scholar · View at Scopus
  18. R. L. Heath and L. Packer, “Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation,” Archives of Biochemistry and Biophysics, vol. 125, no. 1, pp. 189–198, 1968. View at Google Scholar · View at Scopus
  19. S. P. Mukherjee and M. A. Choudhuri, “Implications of water stress induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings,” Plant Physiology, vol. 58, pp. 166–170, 1983. View at Google Scholar
  20. Y. Nakano and K. Asada, “Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts,” Plant and Cell Physiology, vol. 22, no. 5, pp. 867–880, 1981. View at Google Scholar · View at Scopus
  21. H. M. Hemeda and B. P. Klein, “Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts,” Journal of Food Science, vol. 55, pp. 184–185, 1990. View at Google Scholar
  22. H. Aebi, “Catalase in vitro,” Methods in Enzymology, vol. 105, pp. 121–126, 1984. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Rai, A. K. Agnihotri, S. Khatoon, A. K. S. Rawat, and S. Mehrotra, “Chromium in some herbal drugs,” Bulletin of Environmental Contamination and Toxicology, vol. 74, no. 3, pp. 464–469, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Wagner, S. Baldt, and E. M. Zgainski, Plant Drug Analysis—A Thin Layer Chromatographic Atlas, Springer, Berlin, Germany, 1984.
  25. K. A. Gomez and A. A. Gomez, Statistical Procedures for Agricultural Research, John Wiley & Sons, New York, NY, USA, 1994.
  26. A. K. Shanker, C. Cervantes, H. Loza-Tavera, and S. Avudainayagam, “Chromium toxicity in plants,” Environment International, vol. 31, no. 5, pp. 739–753, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. A. K. Shanker, M. Djanaguiraman, R. Sudhagar, C. N. Chandrashekar, and G. Pathmanabhan, “Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R.Wilczek. cv CO 4) roots,” Plant Science, vol. 166, no. 4, pp. 1035–1043, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. F. van Assche and H. Clijsters, “Effect of metals on enzyme activities in plants,” Plant, Cell and Environment, vol. 13, pp. 195–206, 1990. View at Google Scholar
  29. S. M. Gallego, M. P. Benavídes, and M. L. Tomaro, “Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress,” Plant Science, vol. 121, no. 2, pp. 151–159, 1996. View at Google Scholar · View at Scopus
  30. D. C. Sharma, C. P. Sharma, and R. D. Tripathi, “Phytotoxic lesions of chromium in maize,” Chemosphere, vol. 51, no. 1, pp. 63–68, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Vajpayee, R. D. Tripathi, U. N. Rai, M. B. Ali, and S. N. Singh, “Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L.,” Chemosphere, vol. 41, no. 7, pp. 1075–1082, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Halliwell, “Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts,” Chemistry and Physics of Lipids, vol. 44, no. 2-4, pp. 327–340, 1987. View at Google Scholar · View at Scopus
  33. R. K. Siddaramaiah, H. Ramakrishnaiah, S. Somashekar, and S. Subramanya, “Assessment of toxicity of heavy metal rich industrial effluents using germination and chlorophyll content tests,” Journal of Industrial Pollution Control, vol. 14, no. 1, pp. 27–35, 1998. View at Google Scholar · View at Scopus
  34. P. Vajpayee, U. N. Rai, M. B. Ali et al., “Chromium-induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent,” Bulletin of Environmental Contamination and Toxicology, vol. 67, no. 2, pp. 246–256, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. K. J. A. Davies, “Protein damage and degradation by oxygen radicals. I. General aspects,” The Journal of Biological Chemistry, vol. 262, no. 20, pp. 9895–9901, 1987. View at Google Scholar · View at Scopus
  36. R. A. Larson, “The antioxidants of higher plants,” Phytochemistry, vol. 27, no. 4, pp. 969–978, 1988. View at Google Scholar · View at Scopus
  37. U. Galli, H. Schüepp, and C. Brunold, “Thiols in cadmium- and copper-treated maize (Zea mays L.),” Planta, vol. 198, no. 1, pp. 139–143, 1996. View at Google Scholar · View at Scopus
  38. S. Sinha and R. Saxena, “Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacoside—a content in medicinal plant Bacopa monnieri L.,” Chemosphere, vol. 62, no. 8, pp. 1340–1350, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Saradhi and P. P. Saradhi, “Proline accumulation under heavy metal stress,” Journal of Plant Physiology, vol. 138, pp. 554–558, 1991. View at Google Scholar
  40. N. P. Rout and B. P. Shaw, “Salinity tolerance in aquatic macrophytes: probable role of proline, the enzymes involved in its synthesis and C4 type of metabolism,” Plant Science, vol. 136, no. 2, pp. 121–130, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. S. M. Gallego, M. P. Benavides, and M. L. Tomaro, “Oxidative damage caused by cadmium chloride in sunflower (Helianthus annuus L.) plants,” Phyton, vol. 58, no. 1-2, pp. 41–52, 1996. View at Google Scholar · View at Scopus
  42. S. Sinha, M. Gupta, and P. Chandra, “Oxidative stress induced by iron in Hydrilla verticillata (l.f.) Royle: response of antioxidants,” Ecotoxicology and Environmental Safety, vol. 38, no. 3, pp. 286–291, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. V. Dixit, V. Pandey, and R. Shyam, “Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria,” Plant, Cell and Environment, vol. 25, no. 5, pp. 687–693, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Samantary, “Biochemical responses of Cr-tolerant and Cr-sensitive mung bean cultivars grown on varying levels of chromium,” Chemosphere, vol. 47, no. 10, pp. 1065–1072, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Chaoui, S. Mazhoudi, M. H. Ghorbal, and E. El Ferjani, “Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.),” Plant Science, vol. 127, no. 2, pp. 139–147, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. J. E. J. Weckx and H. M. M. Clijsters, “Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper,” Physiologia Plantarum, vol. 96, no. 3, pp. 506–512, 1996. View at Google Scholar · View at Scopus
  47. W. E. Rauser, “Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins,” Cell Biochemistry and Biophysics, vol. 31, no. 1, pp. 19–48, 1999. View at Google Scholar · View at Scopus
  48. F. Zeng, B. Qiu, X. Wu, S. Niu, F. Wu, and G. Zhang, “Glutathione-mediated alleviation of chromium toxicity in rice plants,” Biological Trace Element Research, vol. 148, no. 2, pp. 255–263, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. A. K. Shukla, A. K. Shasany, M. M. Gupta, and S. P. S. Khanuja, “Transcriptome analysis in Catharanthus roseus leaves and roots for comparative terpenoid indole alkaloid profiles,” Journal of Experimental Botany, vol. 57, no. 14, pp. 3921–3932, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. V. de Luca, J. Balsevich, R. T. Tyler, U. Eilert, B. D. Panchuk, and W. G. W. Kurz, “Biosynthesis of indole alkaloids: developmental regulation of the biosynthetic pathway from tabersonine to vindoline in Catharanthus roseus,” Journal of Plant Physiology, vol. 125, pp. 147–156, 1986. View at Google Scholar
  51. S. Cacace, G. Schröder, E. Wehinger, D. Strack, J. Schmidt, and J. Schröder, “A flavonol O-methyltransferase from Catharanthus roseus performing two sequential methylations,” Phytochemistry, vol. 62, pp. 127–137, 2003. View at Google Scholar
  52. J. Zhao, W.-H. Zhu, Q. Hu, and Y.-Q. Guo, “Improvement of indole alkaloid production in Catharanthus roseus cell cultures by osmotic shock,” Biotechnology Letters, vol. 22, no. 15, pp. 1227–1231, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Zhao, W.-H. Zhu, Q. Hu, and X.-W. He, “Improved alkaloid production in Catharanthus roseus suspension cell cultures by various chemicals,” Biotechnology Letters, vol. 22, no. 15, pp. 1221–1226, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Zhao, W. H. Zhu, and Q. Hu, “Promotion of indole alkaloid production in Catharanthus roseus cell cultures by rare earth elements,” Biotechnology Letters, vol. 22, no. 10, pp. 825–828, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Zhao, Q. Hu, Y.-Q. Guo, and W.-H. Zhu, “Elicitor-induced indole alkaloid biosynthesis in Catharanthus roseus cell cultures is related to Ca2+ influx and the oxidative burst,” Plant Science, vol. 161, no. 3, pp. 423–431, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Zhao, W. H. Zhu, and Q. Hu, “Enhanced catharanthine production in Catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors,” Applied Microbiology and Biotechnology, vol. 55, pp. 693–698, 2001. View at Google Scholar
  57. J. Zhao, W.-H. Zhu, Q. Hu, and X.-W. He, “Enhanced indole alkaloid production in suspension compact callus clusters of Catharanthus roseus: impacts of plant growth regulators and sucrose,” Plant Growth Regulation, vol. 33, no. 1, pp. 33–41, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Contin, R. van der Heijden, A. W. M. Lefeber, and R. Verpoorte, “The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture,” FEBS Letters, vol. 434, no. 3, pp. 413–416, 1998. View at Publisher · View at Google Scholar · View at Scopus