Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 934351, 14 pages
http://dx.doi.org/10.1155/2014/934351
Research Article

Molecular Cloning and Biochemical Characterization of a Recombinant Sterol 3-O-Glucosyltransferase from Gymnema sylvestre R.Br. Catalyzing Biosynthesis of Steryl Glucosides

1Metabolic and Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow, Uttar Pradesh 226015, India
2Centre of Innovative and Applied Bioprocessing, (A National Institute under Department of Biotechnology Gov. of India) C-127, Phase-8, Industrial Area, S.A.S. Nagar, Mohali, Punjab 160071, India
3Department of Biotechnology, Uttar Pradesh Technical University, Lucknow, Uttar Pradesh 226021, India

Received 26 February 2014; Revised 9 June 2014; Accepted 23 June 2014; Published 27 August 2014

Academic Editor: Dinesh A. Nagegowda

Copyright © 2014 Pragya Tiwari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. A. Wojciechowski, “Biochemistry of phytosterol conjugates,” in Physiology and Biochemistry of Sterols, G. W. Patterson and W. D. Nes, Eds., pp. 361–395, American Oil Chemists Society, Champaign, Ill, USA, 1991. View at Google Scholar
  2. J. Hughes and M. A. Hughes, “Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons,” DNA Sequence-Journal of DNA Sequencing and Mapping, vol. 5, no. 1, pp. 41–49, 1994. View at Google Scholar · View at Scopus
  3. E. K. Lim and D. J. Bowles, “A class of plant glycosyltransferases involved in cellular homeostatis,” EMBO Journal, vol. 23, no. 15, pp. 2915–2922, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. D. C. Warnecke, M. Baltrusch, F. Buck, F. P. Wolter, and E. Heinz, “UDP-glucose:sterol glucosyltransferase: cloning and functional expression in Escherichia coli,” Plant Molecular Biology, vol. 35, no. 5, pp. 597–603, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. M. J. Zmijewski Jr. and B. Briggs, “Biosynthesis of vancomycin: identification of TDP-glucose: aglycosyl-vancomycin glucosyltransferase from Amycolatopsis orientalis,” FEMS Microbiology Letters, vol. 59, no. 1-2, pp. 129–133, 1989. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Ogasawara, K. Katayama, A. Minami, M. Otsuka, T. Eguchi, and K. Kakinuma, “Cloning, sequencing, and functional analysis of the biosynthetic gene cluster of macrolactam antibiotic vicenistatin in Streptomyces halstedii,” Chemistry and Biology, vol. 11, no. 1, pp. 79–86, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Hoffmeister, K. Ichinose, and A. Bechthold, “Two sequence elements of glycosyltransferases involved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity,” Chemistry and Biology, vol. 8, no. 6, pp. 557–567, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. N. D. Chaurasiya, N. S. Sangwan, F. Sabir, L. Misra, and R. S. Sangwan, “Withanolide biosynthesis recruits both mevalonate and DOXP pathways of isoprenogenesis in Ashwagandha Withania somnifera L. (Dunal),” Plant Cell Reports, vol. 31, no. 10, pp. 1889–1897, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Rohmer, “The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants,” Natural Product Reports, vol. 16, no. 5, pp. 565–574, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. J. R. Hazel and E. E. Williams, “The role of alternations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment,” Progress in Lipid Research, vol. 29, no. 3, pp. 167–227, 1990. View at Publisher · View at Google Scholar · View at Scopus
  11. J. P. Palta, B. D. Whitaker, and L. S. Weiss, “Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of Solanum species,” Plant Physiology, vol. 103, no. 3, pp. 793–803, 1993. View at Google Scholar · View at Scopus
  12. M. Uemura and P. L. Steponkus, “A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance,” Plant Physiology, vol. 104, no. 2, pp. 479–496, 1994. View at Google Scholar · View at Scopus
  13. S. Kunimoto, W. Murofushi, H. Kai et al., “Steryl glucoside is a lipid mediator in stress-responsive signal transduction,” Cell Structure and Function, vol. 27, no. 3, pp. 157–162, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Chaturvedi, M. Mishra, N. Akhtar, P. Gupta, P. Mishra, and R. Tuli, “Sterol glycosyltransferases-identification of members of gene family and their role in stress in Withania somnifera,” Molecular Biology Reports, vol. 39, no. 10, pp. 9755–9764, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. M. K. Mishra, P. Chaturvedi, R. Singh et al., “Overexpression of WsSGTL1 gene of Withania somnifera enhances salt tolerance, heat tolerance and cold acclimation ability in transgenic Arabidopsis plants,” PLoS ONE, vol. 8, no. 4, Article ID e63064, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Pandey, A. Niranjan, N. Atri et al., “WsSGTL1 gene from Withania somnifera, modulates glycosylation profile, antioxidant system and confers biotic and salt stress tolerance in transgenic tobacco,” Planta, vol. 239, no. 6, pp. 1217–1231, 2014. View at Publisher · View at Google Scholar
  17. K. Schumacher and J. Chory, “Brassinosteroid signal transduction: Still casting the actors,” Current Opinion in Plant Biology, vol. 3, no. 1, pp. 79–84, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. J. He, S. Fujioka, T. Li et al., “Sterols regulate development and gene expression in Arabidopsis,” Plant Physiology, vol. 131, no. 3, pp. 1258–1269, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. N. V. Kovganko and Z. N. Kashkan, “Sterol glycosides and acylglycosides,” Chemistry of Natural Compounds, vol. 35, no. 5, pp. 479–497, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Ullmann, A. Ury, P. Rimmele, P. Benveniste, and P. Bouvier-Navé, “UDP-glucose sterol ß-d-glucosyltransferase, a plasma membrane-bound enzyme of plants: enzymatic properties and lipid dependence,” Biochimie, vol. 75, no. 8, pp. 713–723, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Heinz, “Plant glycolipids: structure, isolation and analysis,” in Advances in Lipid Methodology, W. W. Christie, Ed., vol. 3, pp. 211–332, The Oily Press, Dundee, UK, 1996. View at Google Scholar
  22. S. Grille, A. Zaslawski, S. Thiele, J. Plat, and D. Warnecke, “The functions of steryl glycosides come to those who wait: recent advances in plants, fungi, bacteria and animals,” Progress in Lipid Research, vol. 49, no. 3, pp. 262–288, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Chaturvedi, P. Misra, and R. Tuli, “Sterol glycosyltransferases—the enzymes that modify sterols,” Applied Biochemistry and Biotechnology, vol. 165, no. 1, pp. 47–68, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. B. R. Madina, L. K. Sharma, P. Chaturvedi, R. S. Sangwan, and R. Tuli, “Purification and physico-kinetic characterization of 3β-hydroxy specific sterol glucosyltransferase from Withania somnifera (L) and its stress response,” Biochimica et Biophysica Acta, vol. 1774, no. 3, pp. 392–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. B. R. Madina, L. K. Sharma, P. Chaturvedi, R. S. Sangwan, and R. Tuli, “Purification and characterization of a novel glucosyltransferase specific to 27β-hydroxy steroidal lactones from Withania somnifera and its role in stress responses,” Biochimica et Biophysica Acta, vol. 1774, no. 9, pp. 1199–1207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Potocka and J. Zimowski, “Metabolism of conjugated sterols in eggplant. Part 1. UDP-glucose: sterol glucosyltransferase,” Acta Biochimica Polonica, vol. 55, no. 1, pp. 127–134, 2008. View at Google Scholar · View at Scopus
  27. S. Debolt, W.-R. Scheible, K. Schrick et al., “Mutations in UDP-glucose:Sterol glucosyltransferase in Arabidopsis cause transparent testa phenotype and suberization defect in seeds,” Plant Physiology, vol. 151, no. 1, pp. 78–87, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Paquette, B. L. Møller, and S. Bak, “On the origin of family 1 plant glycosyltransferases,” Phytochemistry, vol. 62, no. 3, pp. 399–413, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Zimowski, “Specificity and some other properties of cytosolic and membranous UDP-Glc: 3β-hydroxysteroid glucosyltransferases from Solanum tuberosum leaves,” Phytochemistry, vol. 31, no. 9, pp. 2977–2981, 1992. View at Publisher · View at Google Scholar · View at Scopus
  30. V. U. Ahmad and A. Basha, Spectroscopic Data of Steroid Glycosides, Springer, New York, NY, USA, 2007.
  31. D. C. Warnecke and E. Heinz, “Purification of a membrane-bound UDP-glucose:sterol beta-D-glucosyltransferase based on its solubility in diethyl ether,” Plant Physiology, vol. 105, no. 4, pp. 1067–1073, 1994. View at Google Scholar · View at Scopus
  32. M. Misiak, M. Kalinowska, and Z. A. Wojciechowski, “Characterization of acyllipid: sterol glucoside acyltransferase from oat (Avena sativa L.) seedlings.,” Acta Biochimica Polonica, vol. 38, no. 1, pp. 43–45, 1991. View at Google Scholar · View at Scopus
  33. A. Potocka and J. Zimowski, “Metabolism of conjugated sterols in eggplant. Part 2. phospholipid: steryl glucoside acyltransferase,” Acta Biochimica Polonica, vol. 55, no. 1, pp. 135–140, 2008. View at Google Scholar · View at Scopus
  34. C. Yue and J. Zhong, “Purification and characterization of UDPG: ginsenoside Rd glucosyltransferase from suspended cells of Panax notoginseng,” Process Biochemistry, vol. 40, no. 12, pp. 3742–3748, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. L. K. Sharma, B. R. Madina, P. Chaturvedi, R. S. Sangwan, and R. Tuli, “Molecular cloning and characterization of one member of 3beta-hydroxy sterol glucosyltransferase gene family in Withania somnifera,” Archives of Biochemistry and Biophysics, vol. 460, no. 1, pp. 48–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Tiwari, B. N. Mishra, and N. S. Sangwan, “Phytochemical and pharmacological properties of Gymnema sylvestre, an important medicinal plant,” BioMed Research International, vol. 2014, Article ID 830285, 18 pages, 2014. View at Publisher · View at Google Scholar
  37. D. T. Jones, “A model recognition approach to the prediction of all-helical membrane protein structure and topology,” Biochemistry, vol. 33, no. 10, pp. 3038–3049, 1994. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Breton, L. S. Najdrova, C. Jeanneau et al., “Structures and mechanisms of glycosyltransferases,” Glycobiology, vol. 16, no. 2, pp. 29–37, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Colovos and T. O. Yeates, “Verification of protein structures: patterns of nonbonded atomic interactions,” Protein Science, vol. 2, no. 9, pp. 1511–1519, 1993. View at Publisher · View at Google Scholar · View at Scopus
  41. C. M. M. Gachon, M. Langlois-Meurinne, and P. Saindrenan, “Plant secondary metabolism glycosyltransferases: the emerging functional analysis,” Trends in Plant Science, vol. 10, no. 11, pp. 542–549, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Kumar, R. S. Sangwan, S. Mishra, F. Sabir, and N. S. Sangwan, “In silico motif diversity analysis of the glycon preferentiality of plant secondary metabolic glycosyltransferases,” Plant Omics Journal, vol. 5, no. 3, pp. 200–210, 2012. View at Google Scholar · View at Scopus
  43. Y. Hirai, M. Haque, T. Yoshida, K. Yokota, T. Yasuda, and K. Oguma, “Unique cholesteryl glucosides in Helicobacter pylori: composition and structural analysis,” Journal of Bacteriology, vol. 177, no. 18, pp. 5327–5333, 1995. View at Google Scholar · View at Scopus
  44. W. R. Mayberry and P. F. Smith, “Structures and properties of acyl diglucosylcholesterol and galactofuranosyl diacylglycerol from Acholeplasma axanthum,” Biochimica et Biophysica Acta—Lipids and Lipid Metabolism, vol. 752, no. 3, pp. 434–443, 1983. View at Publisher · View at Google Scholar · View at Scopus
  45. K. R. Patel, P. F. Smith, and W. R. Mayberry, “Comparison of lipids from Spiroplasma citri and corn stunt spiroplasma,” Journal of Bacteriology, vol. 136, no. 2, pp. 829–831, 1978. View at Google Scholar · View at Scopus
  46. B. P. Livermore, R. F. Bey, and R. C. Johnson, “Lipid metabolism of Borrelia hermsi,” Infection and Immunity, vol. 20, no. 1, pp. 215–220, 1978. View at Google Scholar · View at Scopus
  47. A. H. Lebrun, C. Wunder, J. Hildebrand et al., “Cloning of a cholesterol-α-glucosyltransferase from Helicobacter pylori,” The Journal of Biological Chemistry, vol. 281, no. 38, pp. 27765–27772, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Wunder, Y. Churin, F. Winau et al., “Cholesterol glucosylation promotes immune evasion by Helicobacter pylori,” Nature Medicine, vol. 12, no. 9, pp. 1030–1038, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. N. S. Sangwan, L. N. Mishra, S. Tripathi et al., “Omics of secondary metabolic pathways in Withania somnifera Dunal (ashwagandha),” in Omics Applications in Crop Science, pp. 385–408, CRC Press Taylor & Francis, New York, NY, USA, 2014. View at Google Scholar
  50. L. N. Misra, P. Mishra, A. Pandey, R. S. Sangwan, and N. S. Sangwan, “1,4-Dioxane and ergosterol derivatives from Withania somnifera roots,” Journal of Asian Natural Products Research, vol. 14, no. 1, pp. 39–45, 2012. View at Publisher · View at Google Scholar · View at Scopus