Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 949730, 10 pages
http://dx.doi.org/10.1155/2014/949730
Review Article

Vitamin D Receptor Agonists: Suitable Candidates as Novel Therapeutic Options in Autoimmune Inflammatory Myopathy

Section of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy

Received 27 December 2013; Accepted 9 April 2014; Published 7 May 2014

Academic Editor: Marina Bouché

Copyright © 2014 Clara Crescioli. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Girgis, R. J. Clifton-Bligh, M. W. Hamrick, M. F. Holick, and J. E. Gunton, “The roles of vitamin D in skeletal muscle: form, function, and metabolism,” Endocrine Review, vol. 34, pp. 33–83, 2013. View at Google Scholar
  2. L. Ceglia, “Vitamin D and its role in skeletal muscle,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 12, no. 6, pp. 628–633, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Giovannucci, “Expanding roles of vitamin D,” The Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 2, pp. 418–420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Pfeifer, B. Begerow, H. W. Minne, K. Suppan, A. Fahrleitner-Pammer, and H. Dobnig, “Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals,” Osteoporosis International, vol. 20, no. 2, pp. 315–322, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Flicker, R. J. MacInnis, M. S. Stein et al., “Should older people in residential care receive vitamin D to prevent falls? Results of a randomized trial,” Journal of the American Geriatrics Society, vol. 53, no. 11, pp. 1881–1888, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. H. A. Bischoff-Ferrari, B. Dawson-Hughes, W. C. Willett et al., “Effect of vitamin D on falls: a meta-analysis,” The Journal of the American Medical Association, vol. 291, no. 16, pp. 1999–2006, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. T. H. J. Burne, J. J. McGrath, D. W. Eyles, and A. Mackay-Sim, “Behavioural characterization of vitamin D receptor knockout mice,” Behavioural Brain Research, vol. 157, no. 2, pp. 299–308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Endo, D. Inoue, T. Mitsui et al., “Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors,” Endocrinology, vol. 144, no. 12, pp. 5138–5144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. C. Li, A. E. Pirro, M. Amling et al., “Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 18, pp. 9831–9835, 1997. View at Google Scholar · View at Scopus
  10. A. Windelinckx, G. de Mars, G. Beunen et al., “Polymorphisms in the vitamin D receptor gene are associated with muscle strength in men and women,” Osteoporosis International, vol. 18, no. 9, pp. 1235–1242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. C. M. Girgis, R. J. Clifton-Bligh, N. Mokbel, K. Cheng, and J. E. Gunton, “Vitamin D signaling regulates proliferation, differentiation and myotube size in C2C12 skeletal muscle cells,” Endocrinology, vol. 155, pp. 347–357, 2014. View at Google Scholar
  12. J. W. Prineas, A. S. Mason, and R. A. Henson, “Myopathy in metabolic bone disease,” British Medical Journal, vol. 1, pp. 1034–1036, 1965. View at Google Scholar
  13. M. C. Dalakas, “Immunotherapy of myositis: issues, concerns and future prospects,” Nature Reviews Rheumatology, vol. 6, no. 3, pp. 129–137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. F. W. Miller, “New approaches to the assessment and treatment of the idiopathic inflammatory myopathies,” Annals of the Rheumatic Diseases, vol. 71, no. 2, pp. i82–i85, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. F. C. Ernste and A. M. Reed, “Idiopathic inflammatory myopathies: current trends in pathogenesis, clinical features, and up-to-date treatment recommendations,” Mayo Clinical Proceeding, vol. 88, pp. 83–105, 2013. View at Google Scholar
  16. B. Hamilton, “Vitamin D and human skeletal muscle,” Scandinavian Journal of Medicine and Science in Sports, vol. 20, no. 2, pp. 182–190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Bouillon, H. Bischoff-Ferrari, and W. Willett, “Vitamin D and health: perspectives from mice and man,” Journal of Bone and Mineral Research, vol. 23, no. 7, pp. 974–979, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. J. Glueck and B. Conrad, “Severe vitamin D deficiency, myopathy and rhabdomyolysis,” North American Journal of Medical Sciences, vol. 5, pp. 494–495, 2013. View at Google Scholar
  19. Y. Arnson, H. Amital, and Y. Shoenfeld, “Vitamin D and autoimmunity: new aetiological and therapeutic considerations,” Annals of the Rheumatic Diseases, vol. 66, no. 9, pp. 1137–1142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Borgogni, E. Sarchielli, M. Sottili et al., “Elocalcitol inhibits inflammatory responses in human thyroid cells and T cells,” Endocrinology, vol. 149, no. 7, pp. 3626–3634, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Sottili, L. Cosmi, E. Borgogni et al., “Immunomodulatory effects of BXL-01-0029, a less hypercalcemic vitamin D analogue, in human cardiomyocytes and T cells,” Experimental Cell Research, vol. 315, no. 2, pp. 264–273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. C. Dalakas, “Medical progress: polymyositis, dermatomyositis, and inclusion-body myositis,” The New England Journal of Medicine, vol. 325, no. 21, pp. 1487–1498, 1991. View at Google Scholar · View at Scopus
  23. M. C. Dalakas, “Pathophysiology of inflammatory and autoimmune myopathies,” Presse Medicale, vol. 40, no. 4, pp. e237–e247, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Mantegazza, P. Bernasconi, P. Confalonieri, and F. Cornelio, “Inflammatory myopathies and systemic disorders: a review of immunopathogenetic mechanisms and clinical features,” Journal of Neurology, vol. 244, no. 5, pp. 277–287, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Grundtman, V. Malmström, and I. E. Lundberg, “Immune mechanisms in the pathogenesis of idiopathic inflammatory myopathies,” Arthritis Research and Therapy, vol. 9, no. 2, article 208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Arahata and A. G. Engel, “Monoclonal antibody analysis of mononuclear cells in myopathies. I: quantitation of subsets according to diagnosis and sites of accumulation and demonstration and counts of muscle fibers invaded by T cells,” Annals of Neurology, vol. 16, no. 2, pp. 193–208, 1984. View at Google Scholar · View at Scopus
  27. A. G. Engel, K. Arahata, and A. Emslie-Smith, “Immune effector mechanisms in inflammatory myopathies,” Research Publications—Association for Research in Nervous and Mental Disease, vol. 68, pp. 141–157, 1990. View at Google Scholar · View at Scopus
  28. B. de Paepe, K. K. Creus, and J. L. de Bleecker, “Role of cytokines and chemokines in idiopathic inflammatory myopathies,” Current Opinion in Rheumatology, vol. 21, no. 6, pp. 610–616, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Nagaraju, “Update on immunopathogenesis in inflammatory myopathies,” Current Opinion in Rheumatology, vol. 13, no. 6, pp. 461–468, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. J.-H. Choi, Y.-E. Park, S.-I. Kim et al., “Differential Immunohistological features of inflammatory myopathies and dysferlinopathy,” Journal of Korean Medical Science, vol. 24, no. 6, pp. 1015–1023, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Tournadre and P. Miossec, “Chemokines and dendritic cells in inflammatory myopathies,” Annals of the Rheumatic Diseases, vol. 68, no. 3, pp. 300–304, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. C. Dalakas and R. Hohlfeld, “Polymyositis and dermatomyositis,” The Lancet, vol. 362, no. 9388, pp. 971–982, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Hohlfeld, A. G. Engel, N. Goebels, and L. Behrens, “Cellular immune mechanisms in inflammatory myopathies,” Current Opinion in Rheumatology, vol. 9, no. 6, pp. 520–526, 1997. View at Google Scholar · View at Scopus
  34. S. Rayavarapu, W. Coley, T. B. Kinder, and K. Nagaraju, “Idiopathic inflammatory myopathies: pathogenic mechanisms of muscle weakness,” Skeletal Muscle, vol. 3, article 13, 2013. View at Publisher · View at Google Scholar
  35. A. Brunn, K. Zornbach, V. H. Hans, W. F. Haupt, and M. Deckert, “Toll-like receptors promote inflammation in idiopathic inflammatory myopathies,” Journal of Neuropathology and Experimental Neurology, vol. 3, pp. 855–867, 2012. View at Google Scholar
  36. I. Lundberg, J. M. Brengman, and A. G. Engel, “Analysis of cytokine expression in muscle in inflammatory myopathies, Duchenne dystrophy, and non-weak controls,” Journal of Neuroimmunology, vol. 63, no. 1, pp. 9–16, 1995. View at Publisher · View at Google Scholar · View at Scopus
  37. B. de Paepe, K. K. Creus, and J. L. de Bleecker, “Chemokines in idiopathic inflammatory myopathies,” Frontiers in Bioscience, vol. 13, no. 7, pp. 2548–2577, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. D. S. Tews and H. H. Goebel Cytokine, “Expression profile in idiopathic inflammatory myopathies,” Journal of Neuropathology & Experimental Neurology, vol. 55, pp. 342–347, 1996. View at Google Scholar
  39. S. Scolletta, M. Colletti, L. di Luigi, and C. Crescioli, “Vitamin D receptor agonists target CXCL10: new therapeutic tools for resolution of inflammation,” Mediators of Inflammation, vol. 2013, Article ID 876319, 11 pages, 2013. View at Publisher · View at Google Scholar
  40. P. Romagnani and C. Crescioli, “CXCL10: a candidate biomarker in transplantation,” Clinica Chimica Acta, vol. 413, pp. 1364–1373, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Nagaraju, N. Raben, G. Merritt, L. Loeffler, K. Kirk, and P. Plotz, “A variety of cytokines and immunologically relevant surface molecules are expressed by normal human skeletal muscle cells under proinflammatory stimuli,” Clinical and Experimental Immunology, vol. 113, no. 3, pp. 407–414, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. B. K. Pedersen, “Edward F. Adolph Distinguished Lecture: muscle as an endocrine organ: IL-6 and other myokines,” The Journal of Applied Physiology, vol. 107, no. 4, pp. 1006–1014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. I. Loell and I. E. Lundberg, “Can muscle regeneration fail in chronic inflammation: a weakness in inflammatory myopathies?” Journal of Internal Medicine, vol. 269, no. 3, pp. 243–257, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. M. E. DeVries, K. A. Hosiawa, C. M. Cameron et al., “The role of chemokines and chemokine receptors in alloantigen-independent and alloantigen-dependent transplantation injury,” Seminars in Immunology, vol. 15, no. 1, pp. 33–48, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. M. de Rossi, P. Bernasconi, F. Baggi, R. de Waal Malefyt, and R. Mantegazza, “Cytokines and chemokines are both expressed by human myoblasts: possible relevance for the immune pathogenesis of muscle inflammation,” International Immunology, vol. 12, no. 9, pp. 1329–1335, 2000. View at Google Scholar · View at Scopus
  46. R. Raju, O. M. Vasconcelos, C. Semino-Mora, R. P. Granger, and M. C. Dalakas, “Expression of interferon-gamma inducible chemokines in the muscles of patients with inclusion body myositis,” Neurology, vol. 58, p. A390, 2002. View at Google Scholar
  47. P. Confalonieri, P. Bernasconi, P. Megna, S. Galbiati, F. Cornelio, and R. Mantegazza, “Increased expression of β-chemokines in muscle of patients with inflammatory myopathies,” Journal of Neuropathology and Experimental Neurology, vol. 59, no. 2, pp. 164–169, 2000. View at Google Scholar · View at Scopus
  48. C. Crescioli, M. Sottili, P. Bonini et al., “Inflammatory response in human skeletal muscle cells: CXCL10 as a potential therapeutic target,” European Journal of Cell Biology, vol. 91, no. 2, pp. 139–149, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. L. di Luigi, M. Sottili, C. Antinozzi et al., “The vitamin D receptor agonist BXL-01-0029 as a potential new pharmacological tool for the treatment of inflammatory myopathies,” PLoS ONE, vol. 8, Article ID e77745, 2013. View at Google Scholar
  50. A. D. Luster and J. V. Ravetch, “Biochemical characterization of a γ interferon-inducible cytokine (IP-10),” Journal of Experimental Medicine, vol. 166, no. 4, pp. 1084–1097, 1987. View at Google Scholar · View at Scopus
  51. M. Loetscher, B. Gerber, P. Loetscher et al., “Chemokine receptor specific for IP10 and Mig: structure, function, and expression in activate T-Lymphocytes,” Journal of Experimental Medicine, vol. 184, no. 3, pp. 963–969, 1996. View at Google Scholar · View at Scopus
  52. M. Loetscher, P. Moetscher, N. Brass, E. Meese, and B. Moser, “Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization,” European Journal of Immunology, vol. 28, pp. 3696–3705, 1998. View at Google Scholar
  53. S. Qin, J. B. Rottman, P. Myers et al., “The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions,” The Journal of Clinical Investigation, vol. 101, no. 4, pp. 746–754, 1998. View at Google Scholar · View at Scopus
  54. J. D. Campbell, V. Gangur, F. E. R. Simons, and K. T. HayGlass, “Allergic humans are hyporesponsive to a CXCR3 ligand-mediated Th1 immunity-promoting loop,” The FASEB Journal, vol. 18, no. 2, pp. 329–331, 2004. View at Google Scholar · View at Scopus
  55. D. Figarella-Branger, M. Civatte, C. Bartoli, and J.-F. Pellissier, “Cytokines, chemokines, and cell adhesion molecules in inflammatory myopathies,” Muscle and Nerve, vol. 28, no. 6, pp. 659–682, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Frasca, M. Nasso, F. Spensieri et al., “IFN-γ arms human dendritic cells to perform multiple effector functions,” Journal of Immunology, vol. 180, no. 3, pp. 1471–1481, 2008. View at Google Scholar · View at Scopus
  57. S. Forsgren, L. Renström, C. Purdam, and J. E. Gaida, “TNF-alpha in the locomotor system beyond joints: high degree of involvement in myositis in a rabbit model,” International Journal of Rheumatology, vol. 2012, Article ID 637452, 11 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Chinoy, F. Salway, S. John et al., “Tumour necrosis factor-α single nucleotide polymorphisms are not independent of HLA class I in UK Caucasians with adult onset idiopathic inflammatory myopathies,” Rheumatology, vol. 46, no. 9, pp. 1411–1416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. C. W. Keller, C. Fokken, S. G. Turville et al., “TNF-α induces macroautophagy and regulates MHC class II expression in human skeletal muscle cells,” The Journal of Biological Chemistry, vol. 286, no. 5, pp. 3970–3980, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. A. R. Baudy, N. Saxena, H. Gordish, E. P. Hoffman, and K. Nagaraju, “A robust in vitro screening assay to identify NF-κB inhibitors for inflammatory muscle diseases,” International Immunopharmacology, vol. 9, no. 10, pp. 1209–1214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Sugihara, N. Okiyama, N. Watanabe, N. Miyasaka, and H. Kohsaka, “Interleukin-1 and tumor necrosis factor α blockade treatment of experimental polymyositis in mice,” Arthritis and Reumatism, vol. 64, pp. 2655–2662, 2012. View at Google Scholar
  62. A. Tournadre, J.-J. Dubost, and M. Soubrier, “Treatment of inflammatory muscle disease in adults,” Joint Bone Spine, vol. 77, no. 5, pp. 390–394, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Hodgetts, H. Radley, M. Davies, and M. D. Grounds, “Reduced necrosis of dystrophic muscle by depletion of host neutrophils, or blocking TNFα function with Etanercept in mdx mice,” Neuromuscular Disorders, vol. 16, no. 9-10, pp. 591–602, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Efthimiou, “Tumor necrosis factor-α in inflammatory myopathies: pathophysiology and therapeutic implications,” Seminars in Arthritis and Rheumatism, vol. 36, no. 3, pp. 168–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Dold, M. E. Justiniano, J. Marquez, and L. R. Espinoza, “Treatment of early and refractory dermatomyositis with infliximab: a report of two cases,” Clinical Rheumatology, vol. 26, no. 7, pp. 1186–1188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. T. Hehlgans and K. Pfeffer, “The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games,” Immunology, vol. 115, no. 1, pp. 1–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. G. C. Suvannavejh, H.-O. Lee, J. Padilla, M. C. Dal Canto, T. A. Barrett, and S. D. Miller, “Divergent roles for p55 and p75 tumor necrosis factor receptors in the pathogenesis of MOG35-55-induced experimental autoimmune encephalomyelitis,” Cellular Immunology, vol. 205, no. 1, pp. 24–33, 2000. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Abu-Amer and Z. Bar-Shavit, “Impaired bone marrow-derived macrophage differentiation in vitamin D deficiency,” Cellular Immunology, vol. 151, no. 2, pp. 356–368, 1993. View at Publisher · View at Google Scholar · View at Scopus
  69. H. P. Koeffler, H. Reichel, J. E. Bishop, and A. W. Norman, “γ-interferon stimulates production of 1,25-dihydroxyvitamin D3 by normal human macrophages,” Biochemical and Biophysical Research Communications, vol. 127, no. 2, pp. 596–603, 1985. View at Google Scholar · View at Scopus
  70. H. Reichel, H. P. Koeffler, J. E. Bishop, and A. W. Norman, “25-hydroxyvitamin D3 metabolism by lipopolysaccharide-stimulated normal human macrophages,” The Journal of Clinical Endocrinology and Metabolism, vol. 64, no. 1, pp. 1–9, 1987. View at Google Scholar · View at Scopus
  71. L. J. Dickie, L. D. Church, L. R. Coulthard, R. J. Mathews, P. Emery, and M. F. McDermott, “Vitamin D3 down-regulates intracellular Toll-like receptor 9 expression and Toll-like receptor 9-induced IL-6 production in human monocytes,” Rheumatology, vol. 49, no. 8, pp. 1466–1471, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Sadeghi, B. Wessner, U. Laggner et al., “Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns,” European Journal of Immunology, vol. 36, no. 2, pp. 361–370, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. D. M. Provvedini, C. D. Tsoukas, L. J. Deftos, and S. C. Manolagas, “1,25-dihydroxyvitamin D3 receptors in human leukocytes,” Science, vol. 221, no. 4616, pp. 1181–1183, 1983. View at Google Scholar · View at Scopus
  74. F. Baeke, H. Korf, L. Overbergh et al., “Human T lymphocytes are direct targets of 1,25-dihydroxyvitamin D3 in the immune system,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 121, no. 1-2, pp. 221–227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. A. K. Bhalla, E. P. Amento, B. Serog, and L. H. Glimcher, “1,25-dihydroxyvitamin D3 inhibits antigen-induced T cell activation,” Journal of Immunology, vol. 133, no. 4, pp. 1748–1754, 1984. View at Google Scholar · View at Scopus
  76. J. M. Lemire, D. C. Archer, L. Beck, and H. L. Spiegelberg, “Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions,” The Journal of Nutrition, vol. 125, no. 6, pp. 1704S–1708S, 1995. View at Google Scholar · View at Scopus
  77. F. Matter, S. Smiroldo, F. Galbiati et al., “Inhibition of Th1 development and treatment of chronic-relapsing experimental allergic encephalomyelitis by a non-hypercalcemic analogue of 1, 25-dihydroxyvitamin D3,” European Journal of Immunology, vol. 30, pp. 498–508, 2000. View at Google Scholar
  78. I. Alroy, T. L. Towers, and L. P. Freedman, “Transcriptional repression of the interleukin-2 gene by vitamin D3: direct inhibition of NFATp/AP-1 complex formation by a nuclear hormone receptor,” Molecular and Cellular Biology, vol. 15, no. 10, pp. 5789–5799, 1995. View at Google Scholar · View at Scopus
  79. A. Takeuchi, G. S. Reddy, T. Kobayashi, T. Okano, J. Park, and S. Sharma, “Nuclear factor of activated T cells (NFAT) as a molecular target for 1α,25-dihydroxyvitamin D3-mediated effects,” Journal of Immunology, vol. 160, no. 1, pp. 209–218, 1998. View at Google Scholar · View at Scopus
  80. M. Cippitelli and A. Santoni, “Vitamin D3: a transcriptional modulator of the interferon-gamma gene,” European Journal of Immunology, vol. 28, pp. 3017–3030, 1998. View at Google Scholar
  81. M. T. Cantorna, W. D. Woodward, C. E. Hayes, and H. F. DeLuca, “1,25-dihydroxyvitamin D3 is a positive regulator for the two anti- encephalitogenic cytokines TGF-β1 and IL-4,” Journal of Immunology, vol. 160, no. 11, pp. 5314–5319, 1998. View at Google Scholar · View at Scopus
  82. M. D. Griffin, N. Xing, and R. Kumar, “Vitamin D and its analogs as regulators of immune activation and antigen presentation,” Annual Review of Nutrition, vol. 23, pp. 117–145, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. Q. Li and I. M. Verma, “NF-κB regulation in the immune system,” Nature Reviews Immunology, vol. 2, no. 10, pp. 725–734, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Hyppönen, E. Läärä, A. Reunanen, M.-R. Järvelin, and S. M. Virtanen, “Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study,” The Lancet, vol. 358, no. 9292, pp. 1500–1503, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. D. D. Branisteanu, M. Waer, H. Sobis, S. Marcelis, M. Vandeputte, and R. Bouillon, “Prevention of murine experimental allergic encephalomyelitis: cooperative effects of cyclosporine and 1 α,25-(OH)2D3,” Journal of Neuroimmunology, vol. 61, no. 2, pp. 151–160, 1995. View at Publisher · View at Google Scholar · View at Scopus
  86. M. K. Racke, S. Dhib-Jalbut, B. Cannella, P. S. Albert, C. S. Raine, and D. E. McFarlin, “Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-β1,” Journal of Immunology, vol. 146, no. 9, pp. 3012–3017, 1991. View at Google Scholar · View at Scopus
  87. S. Gregori, M. Casorati, S. Amuchastegui, S. Smiroldo, A. M. Davalli, and L. Adorini, “Regulatory T cells induced by 1α,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance,” Journal of Immunology, vol. 167, no. 4, pp. 1945–1953, 2001. View at Google Scholar · View at Scopus
  88. M. D. Griffin, W. Lutz, V. A. Phan, L. A. Bachman, D. J. McKean, and R. Kumar, “Dendritic cell modulation by 1α,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 12, pp. 6800–6805, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Wang, M. Nuite, and T. E. McAlindon, “Association of estrogen and aromatase gene polymorphisms with systemic lupus erythematosus,” Lupus, vol. 19, no. 6, pp. 734–740, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. J.-C. Souberbielle, J.-J. Body, J. M. Lappe et al., “Vitamin D and musculoskeletal health, cardiovascular disease, autoimmunity and cancer: recommendations for clinical practice,” Autoimmunity Reviews, vol. 9, no. 11, pp. 709–715, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. E. M. Colin, P. S. Asmawidjaja, J. P. van Hamburg et al., “1,25-dihydroxyvitamin D3 modulates Th17 polarization and interleukin-22 expression by memory T cells from patients with early rheumatoid arthritis,” Arthritis and Rheumatism, vol. 62, no. 1, pp. 132–142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Boonstra, F. J. Barrat, C. Crain, V. L. Heath, H. F. J. Savelkoul, and A. O'Garra, “1α,25-dihydroxyvitamin D3 has a direct effect on naïve CD4+ T cells to enhance the development of Th2 cells,” Journal of Immunology, vol. 167, no. 9, pp. 4974–4980, 2001. View at Google Scholar · View at Scopus
  93. E. van Etten and C. Mathieu, “Immunoregulation by 1,25-dihydroxyvitamin D3: basic concepts,” The Journal of Steroid Biochemistry and Molecular Biology, vol. 97, no. 1-2, pp. 93–101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. A. W. Pedersen, K. Holmstrøm, S. S. Jensen et al., “Phenotypic and functional markers for 1α,25-dihydroxyvitamin D3-modified regulatory dendritic cells,” Clinical and Experimental Immunology, vol. 157, no. 1, pp. 48–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Joshi, L.-C. Pantalena, X. K. Liu et al., “1,25-dihydroxyvitamin D3 ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A,” Molecular and Cellular Biology, vol. 31, no. 17, pp. 3653–3669, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. A.-L. Khoo, L. Y. A. Chai, H. J. P. M. Koenen et al., “Regulation of cytokine responses by seasonality of vitamin D status in healthy individuals,” Clinical and Experimental Immunology, vol. 164, no. 1, pp. 72–79, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Fritsche, K. Mondal, A. Ehrnsperger, R. Andreesen, and M. Kreutz, “Regulation of 25-hydroxyvitamin D3-1 alpha-hydroxylase and production of 1 alpha,25-dihydroxyvitamin D3 by human dendritic cells,” Blood, vol. 102, no. 9, pp. 3314–3316, 2003. View at Google Scholar
  98. S. Chen, G. P. Sims, X. X. Chen, Y. Y. Gu, S. Chen, and P. E. Lipsky, “Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation,” Journal of Immunology, vol. 179, no. 3, pp. 1634–1647, 2007. View at Google Scholar · View at Scopus
  99. K. Geldmeyer-Hilt, G. Heine, B. Hartmann, R. Baumgrass, A. Radbruch, and M. Worm, “1,25-dihydroxyvitamin D3 impairs NF-κB activation in human naïve B cells,” Biochemical and Biophysical Research Communications, vol. 407, no. 4, pp. 699–702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. L. Adorini, “Intervention in autoimmunity: the potential of vitamin D receptor agonists,” Cellular Immunology, vol. 233, no. 2, pp. 115–124, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. C. Sagrinati, M. Sottili, B. Mazzinghi et al., “Comparison between VDR analogs and current immunosuppressive drugs in relation to CXCL10 secretion by human renal tubular cells,” Transplant International, vol. 23, no. 9, pp. 914–923, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. C. Crescioli, L. Cosmi, E. Borgogni et al., “Methimazole inhibits CXC chemokine ligand 10 secretion in human thyrocytes,” Journal of Endocrinology, vol. 195, no. 1, pp. 145–155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. C. Crescioli, R. Squecco, L. Cosmi et al., “Immunosuppression in cardiac graft rejection: a human in vitro model to study the potential use of new immunomodulatory drugs,” Experimental Cell Research, vol. 314, no. 6, pp. 1337–1350, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. S. J. Mutt, T. Karhu, S. Lehtonen et al., “Inhibition of cytokine secretion from adipocytes by 1,25-dihydroxyvitamin D3 via the NF-κB pathway,” The FASEB Journal, vol. 26, no. 11, pp. 4400–4407, 2012. View at Publisher · View at Google Scholar
  105. Y. Chen, J. Kong, T. Sun et al., “1,25-dihydroxyvitamin D3 suppresses inflammation-induced expression of plasminogen activator inhibitor-1 by blocking nuclear factor-κB activation,” Archives of Biochemistry and Biophysics, vol. 507, no. 2, pp. 241–247, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. P. Temiz, C. C. Weihl, and A. Pestronk, “Inflammatory myopathies with mitochondrial pathology and protein aggregates,” Journal of the Neurological Sciences, vol. 278, no. 1-2, pp. 25–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. J. M. Schröder and M. Molnar, “Mitochondrial abnormalities and peripheral neuropathy in inflammatory myopathy, especially inclusion body myositis,” Molecular and Cellular Biochemistry, vol. 174, no. 1-2, pp. 277–281, 1997. View at Publisher · View at Google Scholar · View at Scopus
  108. Ó. Miró, J. Casademont, J. M. Grau, D. Jarreta, Á. Urbano-Márquez, and F. Cardellach, “Histological and biochemical assessment of mitochondrial function in dermatomyositis,” British Journal of Rheumatology, vol. 37, no. 10, pp. 1047–1053, 1998. View at Google Scholar · View at Scopus
  109. M. I. Alhatou, J. T. Sladky, O. Bagasra, and J. D. Glass, “Mitochondrial abnormalities in dermatomyositis: characteristic pattern of neuropathology,” Journal of Molecular Histology, vol. 35, no. 6, pp. 615–619, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. S. Gregori, N. Giarratana, S. Smiroldo, M. Uskokovic, and L. Adorini, “A 1α,25-dihydroxyvitamin D3 analog enhances regulatory T-cells and arrests autoimmune diabetes in NOD mice,” Diabetes, vol. 51, no. 5, pp. 1367–1374, 2002. View at Google Scholar · View at Scopus
  111. P. Szodoray, P. Alex, N. Knowlton et al., “Idiopathic inflammatory myopathies, signified by distinctive peripheral cytokines, chemokines and the TNF family members B-cell activating factor and a proliferation inducing ligand,” Rheumatology, vol. 49, no. 10, pp. 1867–1877, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. Y. Wang and H. F. DeLuca, “Is the vitamin D receptor found in muscle?” Endocrinology, vol. 152, no. 2, pp. 354–363, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. H. A. Bischoff, M. Borchers, F. Gudat et al., “In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue,” Histochemical Journal, vol. 33, no. 1, pp. 19–24, 2001. View at Publisher · View at Google Scholar · View at Scopus
  114. C. Buitrago, V. Gonzalez Pardo, and R. Boland, “Role of VDR in 1α, 25-dihydroxyvitamin D3 -dependent non-genomic activation of MAPKs, Src and Akt in skeletal muscle cells,” Journal of Steroid Biochemistry & Molecular Biology, vol. 136, pp. 125–130, 2013. View at Google Scholar
  115. R. L. Boland, “VDR activation of intracellular signaling pathways in skeletal muscle,” Molecular and Cellular Endocrinology, vol. 347, no. 1-2, pp. 11–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. R. C. Khanal and I. Nemere, “The ERp57/GRp58/1,25D3-MARRS receptor: multiple functional roles in diverse cell systems,” Current Medicinal Chemistry, vol. 14, no. 10, pp. 1087–1093, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. R. J. Menaker, P. J. M. Ceponis, and N. L. Jones, “Helicobacter pylori induces apoptosis of macrophages in association with alterations in the mitochondrial pathway,” Infection and Immunity, vol. 72, no. 5, pp. 2889–2898, 2004. View at Publisher · View at Google Scholar · View at Scopus
  118. S. E. Mercer, D. Z. Ewton, X. Deng, S. Lim, T. R. Mazur, and E. Friedman, “Mirk/Dyrk1B mediates survival during the differentiation of C2C12 myoblasts,” The Journal of Biological Chemistry, vol. 280, no. 27, pp. 25788–25801, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. C. M. Girgis, R. J. Clifton-Bligh, N. Turner, S. L. Lau, and J. E. Gunton, “Effects of vitamin D in skeletal muscle: falls, strength, athletic performance and insulin sensitivity,” Clinical Endocrinology, vol. 80, pp. 169–181, 2014. View at Google Scholar
  120. H.-U. Stempfle, C. Werner, U. Siebert et al., “The role of tacrolimus (FK506)-based immunosuppression on bone mineral density and bone turnover after cardiac transplantation: a prospective, longitudinal, randomized, double-blind trial with calcitriol,” Transplantation, vol. 73, no. 4, pp. 547–552, 2002. View at Google Scholar · View at Scopus
  121. M. T. Cantorna, D. A. Hullett, C. Redaelli et al., “1,25-dihydroxyvitamin D3 prolongs graft survival without compromising host resistance to infection or bone mineral density,” Transplantation, vol. 66, no. 7, pp. 828–831, 1998. View at Publisher · View at Google Scholar · View at Scopus
  122. G. Picotto, A. C. Liaudat, L. Bohl, and N. T. Talamoni, “Molecular aspects of vitamin D anticancer activity,” Cancer Investigation, vol. 30, pp. 604–614, 2012. View at Google Scholar
  123. L. J. Scott, C. J. Dunn, and K. L. Goa, “Calcipotriol ointment: a review of its use in the management of psoriasis,” American Journal of Clinical Dermatology, vol. 2, no. 2, pp. 95–120, 2001. View at Google Scholar · View at Scopus
  124. M. di Rosa, M. Malaguarnera, F. Nicoletti, and L. Malaguarnera, “Vitamin D3: a helpful immuno-modulator,” Immunology, vol. 134, no. 2, pp. 123–139, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. D. B. Endres, “Investigation of hypercalcemia,” Clinical Biochemistry, vol. 45, pp. 954–963, 2012. View at Google Scholar
  126. T. Takahashi and K. Morikawa, “Vitamin D receptor agonists: opportunities and challenges in drug discovery,” Current Topics in Medicinal Chemistry, vol. 6, no. 12, pp. 1303–1316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. S. J. Steddon, N. J. Schroeder, and J. Cunningham, “Vitamin D analogues: how do they differ and what is their clinical role?” Nephrology Dialysis Transplantation, vol. 16, no. 10, pp. 1965–1967, 2001. View at Google Scholar · View at Scopus
  128. G. D. Zhu, “Vitamin D analogs currently on the market and in development,” in Why Does Vitamin D Matter? vol. 26, pp. 57–82, Bentham Science Publisher, 2013. View at Google Scholar
  129. D. Feldman, J. Wesley Pike, and J. S. Adams, Vitamin D, Academic Press, London, UK, 3rd edition, 2011.