Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 951512, 11 pages
http://dx.doi.org/10.1155/2014/951512
Review Article

Mesenchymal Stem Cells for Regenerative Therapy: Optimization of Cell Preparation Protocols

William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK

Received 9 October 2013; Accepted 8 December 2013; Published 6 January 2014

Academic Editor: Ryuichi Morishita

Copyright © 2014 Chiho Ikebe and Ken Suzuki. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Li and S. Ikehara, “Bone-marrow-derived mesenchymal stem cells for organ repair,” Stem Cells International, vol. 2013, Article ID 132642, 8 pages, 2013. View at Publisher · View at Google Scholar
  2. D. M. Patel, J. Shah, and A. S. Srivastava, “Therapeutic potential of mesenchymal stem cells in regenerative medicine,” Stem Cells International, vol. 2013, Article ID 496218, 15 pages, 2013. View at Publisher · View at Google Scholar
  3. H. M. Lazarus, S. E. Haynesworth, S. L. Gerson, N. S. Rosenthal, and A. I. Caplan, “Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use,” Bone Marrow Transplantation, vol. 16, no. 4, pp. 557–564, 1995. View at Google Scholar · View at Scopus
  4. M. M. Lalu, L. McIntyre, C. Pugliese et al., “Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials,” PLoS ONE, vol. 7, no. 10, Article ID e47559, 2012. View at Google Scholar
  5. J. Ankrum and J. M. Karp, “Mesenchymal stem cell therapy: two steps forward, one step back,” Trends in Molecular Medicine, vol. 16, no. 5, pp. 203–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. J. Friedenstein, U. F. Gorskaja, and N. N. Kulagina, “Fibroblast precursors in normal and irradiated mouse hematopoietic organs,” Experimental Hematology, vol. 4, no. 5, pp. 267–274, 1976. View at Google Scholar · View at Scopus
  7. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Schallmoser, E. Rohde, A. Reinisch et al., “Rapid large-scale expansion of functional mesenchymal stem cells from unmanipulated bone marrow without animal serum,” Tissue Engineering C, vol. 14, no. 3, pp. 185–196, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Stenderup, J. Justesen, C. Clausen, and M. Kassem, “Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells,” Bone, vol. 33, no. 6, pp. 919–926, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. P. R. Crisostomo, M. Wang, G. M. Wairiuko et al., “High passage number of stem cells adversely affects stem cell activation and myocardial protection,” Shock, vol. 26, no. 6, pp. 575–580, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. E. Bernardo, F. Locatelli, and W. E. Fibbe, “Mesenchymal stromal cells: a novel treatment modality for tissue repair,” Annals of the New York Academy of Sciences, vol. 1176, pp. 101–117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Pountos, D. Corscadden, P. Emery, and P. V. Giannoudis, “Mesenchymal stem cell tissue engineering: techniques for isolation, expansion and application,” Injury, vol. 38, no. 4, pp. S23–S33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Muraglia, R. Cancedda, and R. Quarto, “Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model,” Journal of Cell Science, vol. 113, no. 7, pp. 1161–1166, 2000. View at Google Scholar · View at Scopus
  15. K. Mareschi, D. Rustichelli, R. Calabrese et al., “Multipotent mesenchymal stromal stem cell expansion by plating whole bone marrow at a low cellular density: a more advantageous method for clinical use,” Stem Cells International, vol. 2012, Article ID 920581, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. P. A. Sotiropoulou, S. A. Perez, M. Salagianni, C. N. Baxevanis, and M. Papamichail, “Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells,” Stem Cells, vol. 24, no. 2, pp. 462–471, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. R. S. Sigmons and M. Goldman, “Corona discharge physics and applications,” NATO Advanced Study Institute Series B, vol. 89, pp. 1–64, 1978. View at Google Scholar
  18. S. K. Both, A. J. C. Van Der Muijsenberg, C. A. Van Blitterswijk, J. De Boer, and J. D. De Bruijn, “A rapid and efficient method for expansion of human mesenchymal stem cells,” Tissue Engineering, vol. 13, no. 1, pp. 3–9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Pieri, S. Urbani, B. Mazzanti et al., “Human mesenchymal stromal cells preserve their stem features better when cultured in the Dulbecco's modified Eagle medium,” Cytotherapy, vol. 13, no. 5, pp. 539–548, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. J. Coelho, A. Trigo Cabral, and M. H. Fernandes, “Human bone cell cultures in biocompatibility testing. Part I: osteoblastic differentiation of serially passaged human bone marrow cells cultured in α-MEM and in DMEM,” Biomaterials, vol. 21, no. 11, pp. 1087–1094, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Christie and M. Butler, “Growth and metabolism of a murine hybridoma in cultures containing glutamine-based dipeptides,” Focus, vol. 16, pp. 9–13, 1994. View at Google Scholar
  22. G. Bianchi, A. Banfi, M. Mastrogiacomo et al., “Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2,” Experimental Cell Research, vol. 287, no. 1, pp. 98–105, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Ng, S. Boucher, S. Koh et al., “PDGF, tgf-2. And FGF signaling is important for differentiation and growth of mesenchymal stem cells (mscs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages,” Blood, vol. 112, no. 2, pp. 295–307, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Tamama, H. Kawasaki, and A. Wells, “Epidermal Growth Factor (EGF) treatment on Multipotential Stromal Cells (MSCs). Possible enhancement of therapeutic potential of MSC,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 795385, 10 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Doucet, I. Ernou, Y. Zhang et al., “Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications,” Journal of Cellular Physiology, vol. 205, no. 2, pp. 228–236, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. E. Bernardo, M. A. Avanzini, C. Perotti et al., “Optimization of in vitro expansion of human multipotent mesenchymal stromal cells for cell-therapy approaches: further insights in the search for a fatal calf serum substitute,” Journal of Cellular Physiology, vol. 211, no. 1, pp. 121–130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Sundin, O. Ringdén, B. Sundberg, S. Nava, C. Götherström, and K. Le Blanc, “No alloantibodies against mesenchymal stromal cells, but presence of anti-fetal calf serum antibodies, after transplantation in allogeneic hematopoietic stem cell recipients,” Haematologica, vol. 92, no. 9, pp. 1208–1215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Mackensen, R. Dräger, M. Schlesier, R. Mertelsmann, and A. Lindemann, “Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells,” Cancer Immunology Immunotherapy, vol. 49, no. 3, pp. 152–156, 2000. View at Google Scholar · View at Scopus
  29. A. Shahdadfar, K. Frønsdal, T. Haug, F. P. Reinholt, and J. E. Brinchmann, “In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability,” Stem Cells, vol. 23, no. 9, pp. 1357–1366, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Tateishi, W. Ando, C. Higuchi et al., “Comparison of human serum with fetal bovine serum for expansion and differentiation of human synovial MSC: potential feasibility for clinical applications,” Cell Transplantation, vol. 17, no. 5, pp. 549–557, 2008. View at Google Scholar · View at Scopus
  31. J. Jung, N. Moon, J.-Y. Ahn et al., “Mesenchymal stromal cells expanded in human allogenic cord blood serum display higher self-renewal and enhanced osteogenic potential,” Stem Cells and Development, vol. 18, no. 4, pp. 559–571, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Shafaei, A. Esmaeili, M. Mardani et al., “Effects of human placental serum on proliferation and morphology of human adipose tissue-derived stem cells,” Bone Marrow Transplantation, vol. 46, no. 11, pp. 1464–1471, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Lange, F. Cakiroglu, A.-N. Spiess, H. Cappallo-Obermann, J. Dierlamm, and A. R. Zander, “Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine,” Journal of Cellular Physiology, vol. 213, no. 1, pp. 18–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Gruber, F. Karreth, B. Kandler et al., “Platelet-released supernatants increase migration and proliferation, and decrease osteogenic differentiation of bone marrow-derived mesenchymal progenitor cells under in vitro conditions,” Platelets, vol. 15, no. 1, pp. 29–35, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Abdelrazik, G. M. Spaggiari, L. Chiossone, and L. Moretta, “Mesenchymal stem cells expanded in human platelet lysate display a decreased inhibitory capacity on T- and NK-cell proliferation and function,” European Journal of Immunology, vol. 41, no. 11, pp. 3281–3290, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Agata, N. Watanabe, Y. Ishii et al., “Feasibility and efficacy of bone tissue engineering using human bone marrow stromal cells cultivated in serum-free conditions,” Biochemical and Biophysical Research Communications, vol. 382, no. 2, pp. 353–358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. N. K. Venkataramana, S. K. V. Kumar, S. Balaraju et al., “Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson's disease,” Translational Research, vol. 155, no. 2, pp. 62–70, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Walsh, C. Jefferiss, K. Stewart, G. R. Jordan, J. Screen, and J. N. Beresford, “Expression of the developmental markers STRO-1 and alkaline phosphatase in cultures of human marrow stromal cells: regulation by fibroblast growth factor (FGF)-2 and relationship to the expression of FGF receptors 1-4,” Bone, vol. 27, no. 2, pp. 185–195, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Pytlik, O. Slanar, D. Stehlik, and E. Matejkova, “Production of clinical grade mesenchymal stromal cells,” in Regenerative Medicine and Tissue Engineering—Cells and Biomaterials, pp. 145–178, InTech, 2011. View at Google Scholar
  40. D. C. Colter, I. Sekiya, and D. J. Prockop, “Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 14, pp. 7841–7845, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Neuhuber, S. A. Swanger, L. Howard, A. Mackay, and I. Fischer, “Effects of plating density and culture time on bone marrow stromal cell characteristics,” Experimental Hematology, vol. 36, no. 9, pp. 1176–1185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Bartmann, E. Rohde, K. Schallmoser et al., “Two steps to functional mesenchymal stromal cells for clinical application,” Transfusion, vol. 47, no. 8, pp. 1426–1435, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. I. Sekiya, B. L. Larson, J. R. Smith, R. Pochampally, J.-G. Cui, and D. J. Prockop, “Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality,” Stem Cells, vol. 20, no. 6, pp. 530–541, 2002. View at Google Scholar · View at Scopus
  44. G. Brooke, T. Rossetti, R. Pelekanos et al., “Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials,” British Journal of Haematology, vol. 144, no. 4, pp. 571–579, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. P. P. Carvalho, X. Wu, G. Yu et al., “Use of animal protein-free products for passaging adherent human adipose-derived stromal/stem cells,” Cytotherapy, vol. 13, no. 5, pp. 594–597, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Haack-Sørensen and J. Kastrup, “Cryopreservation and revival of mesenchymal stromal cells,” Methods in Molecular Biology, vol. 698, pp. 161–174, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Pal, M. Hanwate, and S. M. Totey, “Effect of holding time, temperature and different parenteral solutions on viability and functionality of adult bone marrow-derived mesenchymal stem cells before transplantation,” Journal of Tissue Engineering and Regenerative Medicine, vol. 2, no. 7, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Nicol, M. Nieda, C. Donaldson et al., “Cryopreserved human bone marrow stroma is fully functional in vitro,” British Journal of Haematology, vol. 94, no. 2, pp. 258–265, 1996. View at Google Scholar · View at Scopus
  49. M. François, I. B. Copland, S. Yuan, R. Romieu-Mourez, E. K. Waller, and J. Galipeau, “Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-γ licensing,” Cytotherapy, vol. 14, no. 2, pp. 147–152, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Haack-Sørensen, L. Bindslev, S. Mortensen, T. Friis, and J. Kastrup, “The influence of freezing and storage on the characteristics and functions of human mesenchymal stromal cells isolated for clinical use,” Cytotherapy, vol. 9, no. 4, pp. 328–337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. E. J. Woods, B. C. Perry, J. J. Hockema, L. Larson, D. Zhou, and W. S. Goebel, “Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use,” Cryobiology, vol. 59, no. 2, pp. 150–157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. S. A. Steigman, M. Armant, L. Bayer-Zwirello et al., “Preclinical regulatory validation of a 3-stage amniotic mesenchymal stem cell manufacturing protocol,” Journal of Pediatric Surgery, vol. 43, no. 6, pp. 1164–1169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. B. C. Goh, S. Thirumala, G. Kilroy, R. V. Devireddy, and J. M. Gimble, “Cryopreservation characteristics of adipose-derived stem cells: maintenance of differentiation potential and viability,” Journal of Tissue Engineering and Regenerative Medicine, vol. 1, no. 4, pp. 322–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Fuller and R. V. Devireddy, “The effect of two different freezing methods on the immediate post-thaw membrane integrity of adipose tissue derived stem cells,” International Journal of Heat and Mass Transfer, vol. 51, no. 23-24, pp. 5650–5654, 2008. View at Publisher · View at Google Scholar · View at Scopus