Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014 (2014), Article ID 964614, 10 pages
Research Article

Female Aging Alters Expression of Human Cumulus Cells Genes that Are Essential for Oocyte Quality

1UFR de Médecine, Université Montpellier 1, 34295 Montpellier, France
2CHU Montpellier, Institut pour la Médecine Régénérative et Biothérapies, Hôpital Saint-Eloi, INSERM U1040, 34295 Montpellier, France
3ART-PGD Department, CHU Montpellier, Hôpital Arnaud de Villeneuve, 34295 Montpellier, France
4Institute of Molecular Genetics of Montpellier, 34293 Montpellier, France

Received 2 July 2014; Revised 15 July 2014; Accepted 17 July 2014; Published 3 September 2014

Academic Editor: Calvin Yu-Chian Chen

Copyright © 2014 Tamadir Al-Edani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Impact of female aging is an important issue in human reproduction. There was a need for an extensive analysis of age impact on transcriptome profile of cumulus cells (CCs) to link oocyte quality and developmental potential with patient’s age. CCs from patients of three age groups were analyzed individually using microarrays. RT-qPCR validation was performed on independent CC cohorts. We focused here on pathways affected by aging in CCs that may explain the decline of oocyte quality with age. In CCs collected from patients >37 years, angiogenic genes including ANGPTL4, LEPR, TGFBR3, and FGF2 were significantly overexpressed compared to patients of the two younger groups. In contrast genes implicated in TGF-β signaling pathway such as AMH, TGFB1, inhibin, and activin receptor were underexpressed. CCs from patients whose ages are between 31 and 36 years showed an overexpression of genes related to insulin signaling pathway such as IGFBP3, PIK3R1, and IGFBP5. A bioinformatic analysis was performed to identify the microRNAs that are potential regulators of the differentially expressed genes of the study. It revealed that the pathways impacted by age were potential targets of specific miRNAs previously identified in our CCs small RNAs sequencing.