Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 965631, 11 pages
Review Article

Understanding the Process of Fibrosis in Duchenne Muscular Dystrophy

Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Institució Catalana de Recerca i Estudis Avançats (ICREA), Doctor Aiguader 83, 08003 Barcelona, Spain

Received 5 March 2014; Accepted 8 April 2014; Published 4 May 2014

Academic Editor: Marina Bouché

Copyright © 2014 Yacine Kharraz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Fibrosis is the aberrant deposition of extracellular matrix (ECM) components during tissue healing leading to loss of its architecture and function. Fibrotic diseases are often associated with chronic pathologies and occur in a large variety of vital organs and tissues, including skeletal muscle. In human muscle, fibrosis is most readily associated with the severe muscle wasting disorder Duchenne muscular dystrophy (DMD), caused by loss of dystrophin gene function. In DMD, skeletal muscle degenerates and is infiltrated by inflammatory cells and the functions of the muscle stem cells (satellite cells) become impeded and fibrogenic cells hyperproliferate and are overactivated, leading to the substitution of skeletal muscle with nonfunctional fibrotic tissue. Here, we review new developments in our understanding of the mechanisms leading to fibrosis in DMD and several recent advances towards reverting it, as potential treatments to attenuate disease progression.