Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 971857, 7 pages
http://dx.doi.org/10.1155/2014/971857
Research Article

O18Quant: A Semiautomatic Strategy for Quantitative Analysis of High-Resolution 16O/18O Labeled Data

1Center for Quantitative Sciences, Vanderbilt University, Nashville, TN 37027, USA
2Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
3Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai 200031, China

Received 28 February 2014; Accepted 18 April 2014; Published 11 May 2014

Academic Editor: Leng Han

Copyright © 2014 Yan Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. P. Gygi, Y. Rochon, B. R. Franza, and R. Aebersold, “Correlation between protein and mRNA abundance in yeast,” Molecular and Cellular Biology, vol. 19, no. 3, pp. 1720–1730, 1999. View at Google Scholar · View at Scopus
  2. A. Belle, A. Tanay, L. Bitincka, R. Shamir, and E. K. O'Shea, “Quantification of protein half-lives in the budding yeast proteome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 35, pp. 13004–13009, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. T. P. Conrads, K. Alving, T. D. Veenstra et al., “Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling,” Analytical Chemistry, vol. 73, no. 9, pp. 2132–2139, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Munchbach, M. Quadroni, G. Miotto, and P. James, “Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety,” Analytical Chemistry, vol. 72, no. 17, pp. 4047–4057, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. I. I. Stewart, T. Thomson, and D. Figeys, “O labeling: a tool for proteomics,” Rapid Communications in Mass Spectrometry, vol. 15, no. 24, pp. 2456–2465, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. R. D. Smith, L. Pasa-Tolic, M. S. Lipton et al., “Rapid quantitative measurements of proteomes by Fourier transform ion cyclotron resonance mass spectrometry,” Electrophoresis, vol. 22, pp. 1652–1668, 2001. View at Google Scholar
  7. N. Sharon, V. Grisaro, and H. Neumann, “Pepsin-catalyzed exchange of oxygen atoms between water and carboxylic acids,” Archives of Biochemistry and Biophysics, vol. 97, no. 1, pp. 219–221, 1962. View at Google Scholar · View at Scopus
  8. J. L. Capelo, R. J. Carreira, L. Fernandes, C. Lodeiro, H. M. Santos, and J. Simal-Gandara, “Latest developments in sample treatment for 18O-isotopic labeling for proteomics mass spectrometry-based approaches: a critical review,” Talanta, vol. 80, no. 4, pp. 1476–1486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Fenselau and X. Yao, “18O2-Labeling in quantitative proteomic strategies: a status report,” Journal of Proteome Research, vol. 8, no. 5, pp. 2140–2143, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Miyagi and K. C. S. Rao, “Proteolytic 18O-labeling strategies for quantitative proteomics,” Mass Spectrometry Reviews, vol. 26, no. 1, pp. 121–136, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Fernandez-De-Cossio, “Mass spectrum patterns of 18O-tagged peptides labeled by enzyme-catalyzed oxygen exchange,” Analytical Chemistry, vol. 83, no. 8, pp. 2890–2896, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Jorge, P. Navarro, P. Martínez-Acedo et al., “Statistical model to analyze quantitative proteomics data obtained by 18O/16O labeling and linear ion trap mass spectrometry: application to the study of vascular endothelial growth factor-induced angiogenesis in endothelial cells,” Molecular and Cellular Proteomics, vol. 8, no. 5, pp. 1130–1149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. J. Mason, T. M. Therneau, J. E. Eckel-Passow et al., “A method for automatically interpreting mass spectra of 18O-labeled isotopic clusters,” Molecular and Cellular Proteomics, vol. 6, no. 2, pp. 305–318, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Ramos-Fernández, D. López-Ferrer, and J. Vázquez, “Improved method for differential expression proteomics using trypsin-catalyzed 18O labeling with a correction for labeling efficiency,” Molecular and Cellular Proteomics, vol. 6, no. 7, pp. 1274–1286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. Q. Zhu, D. Valkenborg, and T. Burzykowski, “Markov-chain-based heteroscedastic regression model for the analysis of high-resolution enzymatically 18O-labeled mass spectra,” Journal of Proteome Research, vol. 9, no. 5, pp. 2669–2677, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Xu, L. Yang, and M. A. Freitas, “A robust linear regression based algorithm for automated evaluation of peptide identifications from shotgun proteomics by use of reversed-phase liquid chromatography retention time,” BMC Bioinformatics, vol. 9, article 347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Sboner, A. Karpikov, G. Chen et al., “Robust-linear-model normalization to reduce technical variability in functional protein microarrays,” Journal of Proteome Research, vol. 8, no. 12, pp. 5451–5464, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Guan, N. Rastogi, M. R. Parthun, and M. A. Freitas, “SILAC peptide ratio calculator: a tool for SILAC quantitation of peptides and post-translational modifications,” Journal of Proteome Research, vol. 13, no. 2, pp. 506–516, 2014. View at Publisher · View at Google Scholar
  19. D. Hajkova, Y. Imanishi, V. Palamalai et al., “Proteomic changes in the photoreceptor outer segment upon intense light exposure,” Journal of Proteome Research, vol. 9, no. 2, pp. 1173–1181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. C. H. W. Hirs, “Performic acid oxidation,” in Methods in Enzymology, C. H. W. Hirs, Ed., pp. 197–199, Academic Press, 1967. View at Google Scholar
  21. C. S. R. Kadiyala, S. E. Tomechko, and M. Miyagi, “Perfluorooctanoic acid for shotgun proteomics,” PLoS ONE, vol. 5, no. 12, Article ID e15332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Wanner, R. Subbaiah, Y. Skomorovska-Prokvolit et al., “Proteomic profiling and functional characterization of early and late shoulder osteoarthritis,” Arthritis Research & Therapy, vol. 15, article R180, 2013. View at Publisher · View at Google Scholar
  23. Q. Sheng, J. Dai, Y. Wu, H. Tang, and R. Zeng, “BuildSummary: using a group-based approach to improve the sensitivity of peptide/protein identification in shotgun proteomics,” Journal of Proteome Research, vol. 11, no. 3, pp. 1494–1502, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. A. L. Rockwood and P. Haimi, “Efficient calculation of accurate masses of isotopic peaks,” Journal of the American Society for Mass Spectrometry, vol. 17, no. 3, pp. 415–419, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Carrillo, C. Yanofsky, S. Laboissiere, R. Nadon, and R. E. Kearney, “Methods for combining peptide intensities to estimate relative protein abundance,” Bioinformatics, vol. 26, no. 1, pp. 98–103, 2010. View at Google Scholar · View at Scopus