Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2014, Article ID 978582, 8 pages
http://dx.doi.org/10.1155/2014/978582
Research Article

Analgesic, Anti-Inflammatory, and Chondroprotective Activities of Cryptolepis buchanani Extract: In Vitro and In Vivo Studies

1Department of Pharmacology and Center of Excellence for Innovation in Chemistry, Faculty of Medicine, Chiang Mai University, Indhawaroros Road, Chiang Mai 50200, Thailand
2Department of Medical Technology, Faculty of Associated Medicine, Chiang Mai University, Indhawaroros Road, Chiang Mai 50200, Thailand
3Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry and Center of Excellence for Innovation in Chemistry, Faculty of Medicine, Chiang Mai University, Indhawaroros Road, Chiang Mai 50200, Thailand
4Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
5The Forest Herbarium National Park, Wildlife and Plant Conservation Department, Ministry of Natural Resources and Environment, Pholyothin Road, Bangkok 10900, Thailand

Received 1 May 2014; Accepted 7 July 2014; Published 27 August 2014

Academic Editor: Brad Upham

Copyright © 2014 Nutthiya Hanprasertpong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Grainger and F. M. Cicuttini, “Medical management of osteoarthritis of the knee and hip joints,” Medical Journal of Australia, vol. 180, no. 5, pp. 232–236, 2004. View at Google Scholar · View at Scopus
  2. K. M. Jordan, N. K. Arden, M. Doherty et al., “EULAR Recommendations 2003: an evidence based approach to the management of knee osteoarthritis: report of a Task Force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT),” Annals of the Rheumatic Diseases, vol. 62, no. 12, pp. 1145–1155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Bitton, “The economic burden of osteoarthritis,” The American Journal of Managed Care, vol. 15, no. 8, pp. S230–S235, 2009. View at Google Scholar · View at Scopus
  4. E. A. Sundman, B. J. Cole, V. Karas et al., “The anti-inflammatory and matrix restorative mechanisms of platelet-rich plasma in osteoarthritis,” The American Journal of Sports Medicine, vol. 42, no. 1, pp. 35–41, 2014. View at Google Scholar
  5. J. Sellam and F. Berenbaum, “Clinical features of osteoarthritis,” in Kelley’s Textbook of Rheumatology, Elsevier Saunders, 9th edition, 2013. View at Google Scholar
  6. R. D. Altman, M. C. Hochberg, R. W. Moskowitz, and T. J. Schnitzer, “Recommendations for the medical management of osteoarthritis of the hip and knee,” Arthritis and Rheumatism, vol. 43, pp. 1905–1915, 2000. View at Publisher · View at Google Scholar
  7. P. Laupattarakasem, T. Wangsrimongkol, R. Surarit, and C. Hahnvajanawong, “In vitro and in vivo anti-inflammatory potential of Cryptolepis buchanani,” Journal of Ethnopharmacology, vol. 108, no. 3, pp. 349–354, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Bunyaprapatsorn and O. Chokchaicharoenporn, Textbook of Community Herbal Medicines 2, Office of Information on Herbal Medicine, Faculty of medicine, Mahidol University, 1997.
  9. A. Panthong, D. Kanjanapothi, and W. C. Taylor, “Ethnobotanical review of medicinal plants from Thai traditional books, Part I: plants with antiinflammatory, antiasthmatic and antihypertensive properties,” Journal of Ethnopharmacology, vol. 18, no. 3, pp. 213–228, 1986. View at Google Scholar · View at Scopus
  10. W. Wuthithammawēt, Encyclopedia of Herbal Medicine. Collection of Thai Pharmaceutical Principles, Samnakphim Odian Sato, Krung Thep MahaNakhon, Bangkok, 1997.
  11. P. Laupattarakasem, P. J. Houghton, J. R. S. Hoult, and A. Itharat, “An evaluation of the activity related to inflammation of four plants used in Thailand to treat arthritis,” Journal of Ethnopharmacology, vol. 85, no. 2-3, pp. 207–215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. H. O. Collier, L. C. Dinneen, C. A. Johnson, and C. Schneider, “The abdominal constriction response and its suppression by analgesic drugs in the mouse,” British Journal of Pharmacology, vol. 32, no. 2, pp. 295–310, 1968. View at Google Scholar · View at Scopus
  13. H. Nakamura, A. Shimoda, K. Ishii, and T. Kadokawa, “Central and peripheral analgesic action of non-acidic non-steroidal anti-inflammatory drugs in mice and rats,” Archives Internationales de Pharmacodynamie et de Therapie, vol. 282, no. 1, pp. 16–25, 1986. View at Google Scholar · View at Scopus
  14. R. Brattsand, A. Thalén, K. Roempke, L. Källström, and E. Gruvstad, “Influence of 16α,17α-acetal substitution and steroid nucleus fluorination on the topical to systemic activity ratio of glucocorticoids,” Journal of Steroid Biochemistry, vol. 16, no. 6, pp. 779–786, 1982. View at Publisher · View at Google Scholar · View at Scopus
  15. C. A. Winter, E. A. Risley, and G. W. Nuss, “Carrageenin-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs,” Proceedings of the Society for Experimental Biology and Medicine, vol. 111, pp. 544–547, 1962. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Chaiwongsa, S. Ongchai, S. Tangyuenyong, P. Kongtawelert, A. Panthong, and V. Reutrakul, “Chondroprotective potential of bioactive compounds of Zingiber cassumunar Roxb. against cytokine-induced cartilage degradation in explant culture,” Journal of Medicinal Plants Research, vol. 6, no. 39, pp. 5204–5213, 2012. View at Google Scholar
  17. R. W. Farndale, D. J. Buttle, and A. J. Barrett, “Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue,” Biochimica et Biophysica Acta, vol. 883, no. 2, pp. 173–177, 1986. View at Google Scholar · View at Scopus
  18. T. Bitter and H. M. Muir, “A modified uronic acid carbazole reaction,” Analytical Biochemistry, vol. 4, no. 4, pp. 330–334, 1962. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Blumenkrantz and G. Asboe Hansen, “New method for quantitative determination of uronic acids,” Analytical Biochemistry, vol. 54, no. 2, pp. 484–489, 1973. View at Publisher · View at Google Scholar · View at Scopus
  20. K. A. Taylor and J. G. Buchanan-Smith, “A colorimetric method for the quantitation of uronic acids and a specific assay for galacturonic acid,” Analytical Biochemistry, vol. 201, no. 1, pp. 190–196, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. C. D. Hoemann, J. Sun, V. Chrzanowski, and M. D. Buschmann, “A multivalent assay to detect glycosaminoglycan, protein, collagen, RNA, and DNA content in milligram samples of cartilage or hydrogel-based repair cartilage,” Analytical Biochemistry, vol. 300, no. 1, pp. 1–10, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. P. D. Clegg, R. M. Burke, A. R. Coughlan, C. M. Riggs, and S. D. Carter, “Characterisation of equine matrix metalloproteinase 2 and 9; and identification of the cellular sources of these enzymes in joints,” Equine Veterinary Journal, vol. 29, no. 5, pp. 335–342, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Decker and M. L. Lohmann-Matthes, “A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity,” Journal of Immunological Methods, vol. 115, no. 1, pp. 61–69, 1988. View at Publisher · View at Google Scholar · View at Scopus
  25. P. E. D. Cesare, S. B. Abramson, and J. Samuels, “Pathogenesis of osteoarthritis,” in Kelley's Textbook of Rheumatology, Elsevier Saunders, Philadelphia, Pa, USA, 8th edition, 2009. View at Google Scholar
  26. M. C. Hochberg, H. D. Humes, H. L. DuPont, and L. B. Gardner, “Osteoarthritis and polychondritis,” in Kelley's Textbook of Internal Medicine, vol. 4, pp. 1360–1364, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2000. View at Google Scholar
  27. P. S. V. Satyanarayana, N. K. Jain, A. Singh, and S. K. Kulkarni, “Isobolographic analysis of interaction between cyclooxygenase inhibitors and tramadol in acetic acid-induced writhing in mice,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 28, no. 4, pp. 641–649, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. J. P. Rathmell and H. L. Fields, Pain: Pathophysiology and Management, McGraw-Hill, 18th edition, 2012.
  29. D. le Bars, M. Gozariu, and S. W. Cadden, “Animal models of nociception,” Pharmacological Reviews, vol. 53, no. 4, pp. 597–652, 2001. View at Google Scholar · View at Scopus
  30. F. Berenbaum, “Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!),” Osteoarthritis and Cartilage, vol. 21, no. 1, pp. 16–21, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. C. S. Bonnet, A. S. Williams, S. J. Gilbert, A. K. Harvey, B. A. Evans, and D. J. Mason, “AMPA/kainate glutamate receptors contribute to inflammation, degeneration and pain related behaviour in inflammatory stages of arthritis,” Annals of the Rheumatic Diseases, 2013. View at Publisher · View at Google Scholar
  32. J. C. Fernandes, J. Martel-Pelletier, and J. Pelletier, “The role of cytokines in osteoarthritis pathophysiology,” Biorheology, vol. 39, no. 1-2, pp. 237–246, 2002. View at Google Scholar · View at Scopus
  33. M. Attur, M. Dave, S. B. Abramson, and A. Amin, “Activation of diverse eicosanoid pathways in osteoarthritic cartilage: a lipidomic and genomic analysis,” Bulletin of the NYU Hospital for Joint Diseases, vol. 70, no. 2, pp. 99–108, 2012. View at Google Scholar · View at Scopus
  34. R. P. Carlson, L. O'Neill-Davis, J. Chang, and A. J. Lewis, “Modulation of mouse ear edema by cyclooxygenase and lipoxygenase inhibitors and other pharmacologic agents,” Agents and Actions, vol. 17, no. 2, pp. 197–204, 1985. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Crunkhorn and S. C. Meacock, “Mediators of the inflammation induced in the rat paw by carrageenin,” British Journal of Pharmacology, vol. 42, no. 3, pp. 392–402, 1971. View at Google Scholar · View at Scopus
  36. M. Di Rosa, “Biological properties of carrageenan,” Journal of Pharmacy and Pharmacology, vol. 24, no. 2, pp. 89–102, 1972. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Di Rosa and D. A. Willoughby, “Screens for anti-inflammatory drugs,” Journal of Pharmaceutics & Pharmacology, vol. 23, no. 4, pp. 297–298, 1971. View at Google Scholar · View at Scopus
  38. R. Vinegar, W. Schreiber, and R. Hugo, “Biphasic development of carrageenin edema in rats,” The Journal of Pharmacology and Experimental Therapeutics, vol. 166, no. 1, pp. 96–103, 1969. View at Google Scholar · View at Scopus
  39. T. Phitak, K. Choocheep, P. Pothacharoen, W. Pompimon, B. Premanode, and P. Kongtawelert, “The effects of p-hydroxycinnamaldehyde from Alpinia galanga extracts on human chondrocytes,” Phytochemistry, vol. 70, no. 2, pp. 237–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. S. Lee, M. B. Ellman, D. Yan et al., “A current review of molecular mechanisms regarding osteoarthritis and pain,” Gene, vol. 527, no. 2, pp. 440–447, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Daheshia and J. Q. Yao, “The interleukin 1beta pathway in the pathogenesis of osteoarthritis,” The Journal of Rheumatology, vol. 35, no. 12, pp. 2306–2312, 2008. View at Google Scholar
  42. B. Kirkham, “Interleulin-1, immune activation pathways, and different mechanisms in osteoarthritis and rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 50, no. 6, pp. 395–400, 1991. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Yaron, I. Shirazi, and I. Yaron, “Anti-interleukin-1 effects of diacerein and rhein in human osteoarthritic synovial tissue and cartilage cultures,” Osteoarthritis and Cartilage, vol. 7, no. 3, pp. 272–280, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. P. E. D. Cesare, S. B. Abramson, and J. Samuels, “Pathogenesis of osteoarthritis,” in Kelley's Textbook of Rheumatology, Elsevier Saunders, Philadelphia, Pa, USA, 9th edition, 2013. View at Google Scholar
  45. N. Saha, F. Moldovan, G. Tardif, J. P. Pelletier, J. M. Cloutier, and J. Martel-Pelletier, “Interleukin-1β-converting enzyme/caspase-1 in human osteoarthritic tissues: localization and role in the maturation of interleukin-1β and interleukin-18,” Arthritis & Rheumatism, vol. 42, no. 8, pp. 1577–1587, 1999. View at Google Scholar
  46. A. J. Wheaton, A. Borthakur, G. R. Dodge, J. B. Kneeland, H. R. Schumacher, and R. Reddy, “Sodium magnetic resonance imaging of proteoglycan depletion in an in vivo model of osteoarthritis,” Academic Radiology, vol. 11, no. 1, pp. 21–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Okada, “Proteinases and matrix degradation,” in Kelley's Textbook of Rheumatology, Elsevier Saunders, Philadelphia, Pa, USA, 9th edition, 2013. View at Google Scholar
  48. S. K. Dutta, B. N. Sharma, and P. V. Sharma, “Buchananine, a novel pyridine alkaloid from Cryptolepis buchanani,” Phytochemistry, vol. 17, no. 11, pp. 2047–2048, 1978. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Sunil, D. Batuk, N. Sharma, and P. V. Sharria, “A new nicotinoyl glucoside from Cryptolepis buchanani,” Phytochemistry, vol. 19, no. 6, p. 1278, 1980. View at Publisher · View at Google Scholar · View at Scopus