Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 103052, 9 pages
http://dx.doi.org/10.1155/2015/103052
Research Article

Development of Enhanced Primer Sets for Detection of Norovirus

1Department of Biomedical Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701, Republic of Korea
2Korea Zoonosis Research Institute, Chonbuk National University, Iksan 570-390, Republic of Korea
3Environmental Infrastructure Research Department, National Institute of Environmental Research, Incheon 404-708, Republic of Korea

Received 29 August 2014; Revised 5 November 2014; Accepted 27 November 2014

Academic Editor: Elena Orlova

Copyright © 2015 Byoung-Hwa Kong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Maritschnik, E. E. Kanitz, E. Simons et al., “A food handler-associated, foodborne norovirus GII.4 Sydney 2012-outbreak following a wedding dinner, Austria, October 2012,” Food and Environmental Virology, vol. 5, no. 4, pp. 220–225, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. S. M. Griffin, N. E. Brinkman, E. J. Hedrick, E. R. Rhodes, and G. S. Fout, “Comparison of nucleic acid extraction and reverse transcription-qPCR approaches for detection of GI and GII noroviruses in drinking water,” Journal of Virological Methods, vol. 199, pp. 76–85, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. M. M. Patel, A. J. Hall, J. Vinjé, and U. D. Parashar, “Noroviruses: a comprehensive review,” Journal of Clinical Virology, vol. 44, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Mattison, “Norovirus as a foodborne disease hazard,” Advances in Food and Nutrition Research, vol. 62, pp. 1–39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. D.-P. Zheng, T. Ando, R. L. Fankhauser, R. S. Beard, R. I. Glass, and S. S. Monroe, “Norovirus classification and proposed strain nomenclature,” Virology, vol. 346, no. 2, pp. 312–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Svraka, E. Duizer, H. Vennema et al., “Etiological role of viruses in outbreaks of acute gastroenteritis in The Netherlands from 1994 through 2005,” Journal of Clinical Microbiology, vol. 45, no. 5, pp. 1389–1394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Barclay, G. W. Park, E. Vega et al., “Infection control for norovirus,” Clinical Microbiology and Infection, vol. 20, no. 8, pp. 731–740, 2014. View at Publisher · View at Google Scholar
  8. K. Y. Green, T. Ando, M. S. Balayan et al., “Taxonomy of the caliciviruses,” The Journal of Infectious Diseases, vol. 181, supplement 2, pp. S322–S330, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Belliot, S. V. Sosnovtsev, T. Mitra, C. Hammer, M. Garfield, and K. Y. Green, “In vitro proteolytic processing of the MD145 Norovirus ORF1 nonstructural polyprotein yields stable precursors and products similar to those detected in calicivirus-infected cells,” Journal of Virology, vol. 77, no. 20, pp. 10957–10974, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. E. Hardy and M. K. Estes, “Completion of the Norwalk virus genome sequence,” Virus Genes, vol. 12, no. 3, pp. 287–290, 1996. View at Google Scholar · View at Scopus
  11. E. F. Donaldson, L. C. Lindesmith, A. D. Lobue, and R. S. Baric, “Viral shape-shifting: norovirus evasion of the human immune system,” Nature Reviews Microbiology, vol. 8, no. 3, pp. 231–241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Bertolotti-Ciarlet, L. J. White, R. Chen, B. V. V. Prasad, and M. K. Estes, “Structural requirements for the assembly of Norwalk virus-like particles,” Journal of Virology, vol. 76, no. 8, pp. 4044–4055, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. B. V. Prasad, M. E. Hardy, T. Dokland, J. Bella, M. G. Rossmann, and M. K. Estes, “X-ray crystallographic structure of the Norwalk virus capsid,” Science, vol. 286, no. 5438, pp. 287–290, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Bertolotti-Ciarlet, S. E. Crawford, A. M. Hutson, and M. K. Estes, “The 3′ end of norwalk virus mRNA contains determinants that regulate the expression and stability of the viral capsid protein vp1: a novel function for the vp2 protein,” Journal of Virology, vol. 77, no. 21, pp. 11603–11615, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. T. N. Hoa Tran, E. Trainor, T. Nakagomi, N. A. Cunliffe, and O. Nakagomi, “Molecular epidemiology of noroviruses associated with acute sporadic gastroenteritis in children: global distribution of genogroups, genotypes and GII.4 variants,” Journal of Clinical Virology, vol. 56, no. 3, pp. 185–193, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Green, “Caliciviridae: the noroviruses,” in Field Virology, D. M. Knipe and P. M. Howley, Eds., pp. 582–608, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 6th edition, 2013. View at Google Scholar
  17. S. Fukuda, Y. Sasaki, S. Takao, and M. Seno, “Recombinant norovirus implicated in gastroenteritis outbreaks in Hiroshima Prefecture, Japan,” Journal of Medical Virology, vol. 80, no. 5, pp. 921–928, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. F. C. Tseng, J. S. Leon, J. N. MacCormack, J.-M. Maillard, and C. L. Moe, “Molecular epidemiology of norovirus gastroenteritis outbreaks in North Carolina, United States: 1995–2000,” Journal of Medical Virology, vol. 79, no. 1, pp. 84–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. T.-H. Han, S.-C. Kim, S.-T. Kim, C.-H. Chung, and J.-Y. Chung, “Detection of norovirus genogroup IV, klassevirus, and pepper mild mottle virus in sewage samples in South Korea,” Archives of Virology, vol. 159, no. 3, pp. 457–463, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Yan, H.-H. Wang, L. Gao et al., “A one-step multiplex real-time RT-PCR assay for rapid and simultaneous detection of human norovirus genogroup I, II and IV,” Journal of Virological Methods, vol. 189, no. 2, pp. 277–282, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. J. J. Siebenga, H. Vennema, B. Renckens et al., “Epochal evolution of GGII.4 norovirus capsid proteins from 1995 to 2006,” Journal of Virology, vol. 81, no. 18, pp. 9932–9941, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Polkowska, M. Ronnqvist, and O. Lepisto, “Outbreak of gastroenteritis caused by norovirus GII.4 Sydney variant after a wedding reception at a resort/activity centre, Finland, August 2012,” Epidemiology and Infection, vol. 142, no. 9, pp. 1877–1883, 2012. View at Publisher · View at Google Scholar
  23. S. M. Ahmed, B. A. Lopman, and K. Levy, “A systematic review and meta-analysis of the global seasonality of norovirus,” PLoS ONE, vol. 8, no. 10, Article ID e75922, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. J. A. Marshall and L. D. Bruggink, “The dynamics of norovirus outbreak epidemics: recent insights,” International Journal of Environmental Research and Public Health, vol. 8, no. 4, pp. 1141–1149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. H. S. Kim, J. Hyun, H.-S. Kim, J.-S. Kim, W. Song, and K. M. Lee, “Emergence of GII.4 Sydney norovirus in South Korea during the winter of 2012-2013,” Journal of Microbiology and Biotechnology, vol. 23, no. 11, pp. 1641–1643, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. S. H. Kim, D. S. Cheon, J. H. Kim et al., “Outbreaks of gastroenteritis that occurred during school excursions in Korea were associated with several waterborne strains of norovirus,” Journal of Clinical Microbiology, vol. 43, no. 9, pp. 4836–4839, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Häfliger, M. Gilgen, J. Lüthy, and P. Hübner, “Seminested RT-PCR systems for small round structured viruses and detection of enteric viruses in seafood,” International Journal of Food Microbiology, vol. 37, no. 1, pp. 27–36, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Wollants and M. van Ranst, “Detection of false positives with a commonly used Norovirus RT-PCR primer set,” Journal of Clinical Virology, vol. 56, no. 1, pp. 84–85, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Kittigul, A. Panjangampatthana, K. Pombubpa et al., “Detection and genetic characterization of norovirus in environmental water samples in Thailand,” The Southeast Asian Journal of Tropical Medicine and Public Health, vol. 43, no. 2, pp. 323–332, 2012. View at Google Scholar · View at Scopus
  30. H. S. Lee and J. H. Lim, SPSS 20.0 Manual, Jiphyunjae, Seoul, Republic of Korea, 2013.
  31. A. J. Hall, B. A. Lopman, D. C. Payne et al., “Norovirus disease in the united states,” Emerging Infectious Diseases, vol. 19, no. 8, pp. 1198–1205, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Barclay, G. W. Park, E. Vega et al., “Infection control for norovirus,” Clinical Microbiology and Infection, vol. 20, no. 8, pp. 731–740, 2014. View at Publisher · View at Google Scholar
  33. H. F. Rabenau, M. Stürmer, S. Buxbaum, A. Walczok, W. Preiser, and H. W. Doerr, “Laboratory diagnosis of norovirus: which method is the best?” Intervirology, vol. 46, no. 4, pp. 232–238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Vinjé, “Advances in laboratory methods for detection and typing of norovirus,” Journal of Clinical Microbiology, 2014. View at Publisher · View at Google Scholar
  35. E. de Bruin, E. Duizer, H. Vennema, and M. P. G. Koopmans, “Diagnosis of Norovirus outbreaks by commercial ELISA or RT-PCR,” Journal of Virological Methods, vol. 137, no. 2, pp. 259–264, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Swellam, M. S. Mahmoud, and A. A.-F. Ali, “Diagnosis of hepatitis C virus infection by enzyme-linked immunosorbent assay and reverse transcriptase-nested polymerase chain reaction: a comparative evaluation,” IUBMB Life, vol. 63, no. 6, pp. 430–434, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Guévremont, J. Brassard, A. Houde, C. Simard, and Y.-L. Trottier, “Development of an extraction and concentration procedure and comparison of RT-PCR primer systems for the detection of hepatitis A virus and norovirus GII in green onions,” Journal of Virological Methods, vol. 134, no. 1-2, pp. 130–135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. I. L. A. Boxman, J. J. H. C. Tilburg, N. A. J. M. Te Loeke et al., “Detection of noroviruses in shellfish in the Netherlands,” International Journal of Food Microbiology, vol. 108, no. 3, pp. 391–396, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. H. K. Joung, S. H. Han, S.-J. Park et al., “Nationwide surveillance for pathogenic microorganisms in groundwater near carcass burials constructed in South Korea in 2010,” International Journal of Environmental Research and Public Health, vol. 10, no. 12, pp. 7126–7143, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. S.-G. Lee, W.-H. Jheong, C.-I. Suh et al., “Nationwide groundwater surveillance of noroviruses in South Korea, 2008,” Applied and Environmental Microbiology, vol. 77, no. 4, pp. 1466–1474, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. J.-G. Fu, J. Ai, X. Qi, J. Zhang, F.-Y. Tang, and Y.-F. Zhu, “Emergence of two novel norovirus genotype II.4 variants associated with viral gastroenteritis in China,” Journal of Medical Virology, vol. 86, no. 7, pp. 1226–1234, 2014. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Mai, M. Jin, X. Guo et al., “Clinical and epidemiologic characteristics of norovirus GII.4 sydney during winter 2012-13 in beijing, china following its global emergence,” PLoS ONE, vol. 8, no. 8, Article ID e71483, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Thongprachum, W. Chan-it, P. Khamrin et al., “Molecular epidemiology of norovirus associated with gastroenteritis and emergence of norovirus GII.4 variant 2012 in Japanese pediatric patients,” Infection, Genetics and Evolution, vol. 23, pp. 65–73, 2014. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Fonager, S. Barzinci, and T. K. Fischer, “Emergence of a new recombinant Sydney 2012 norovirus variant in Denmark, 26 December 2012 to 22 March 2013,” Eurosurveillance, vol. 18, no. 25, 2013. View at Google Scholar
  45. J.-S. Eden, M. M. Tanaka, M. F. Boni, W. D. Rawlinson, and P. A. White, “Recombination within the pandemic norovirus GII.4 lineage,” Journal of Virology, vol. 87, no. 11, pp. 6270–6282, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. V. Martella, M. C. Medici, S. de Grazia et al., “Evidence for recombination between pandemic GII.4 norovirus strains New Orleans 2009 and Sydney 2012,” Journal of Clinical Microbiology, vol. 51, no. 11, pp. 3855–3857, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. M. C. W. Chan, T. F. Leung, A. K. Kwok, N. Lee, and P. K. S. Chan, “Characteristics of patients infected with norovirus GII.4 Sydney 2012, Hong Kong, China,” Emerging Infectious Diseases, vol. 20, no. 4, pp. 558–661, 2014. View at Publisher · View at Google Scholar · View at Scopus