Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 103512, 5 pages
http://dx.doi.org/10.1155/2015/103512
Research Article

Effect of Sodium Benzoate Preservative on Micronucleus Induction, Chromosome Break, and Ala40Thr Superoxide Dismutase Gene Mutation in Lymphocytes

Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum Thani 12121, Thailand

Received 24 December 2014; Accepted 20 January 2015

Academic Editor: Davor Zeljezic

Copyright © 2015 Malinee Pongsavee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Sodium benzoate is food preservative that inhibits microbial growth. The effects of sodium benzoate preservative on micronucleus induction, chromosome break, and Ala40Thr superoxide dismutase gene mutation in lymphocytes were studied. Sodium benzoate concentrations of 0.5, 1.0, 1.5, and 2.0 mg/mL were treated in lymphocyte cell line for 24 and 48 hrs, respectively. Micronucleus test, standard chromosome culture technique, PCR, and automated sequencing technique were done to detect micronucleus, chromosome break, and gene mutation. The results showed that, at 24- and 48-hour. incubation time, sodium benzoate concentrations of 1.0, 1.5, and 2.0 mg/mL increased micronucleus formation when comparing with the control group (). At 24- and 48-hour. incubation time, sodium benzoate concentrations of 2.0 mg/mL increased chromosome break when comparing with the control group (). Sodium benzoate did not cause Ala40Thr (GCGACG) in superoxide dismutase gene. Sodium benzoate had the mutagenic and cytotoxic toxicity in lymphocytes caused by micronucleus formation and chromosome break.