Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 143720, 12 pages
http://dx.doi.org/10.1155/2015/143720
Review Article

Metal-Based Nanoparticles and the Immune System: Activation, Inflammation, and Potential Applications

1Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan 35053, Miaoli County, Taiwan
2National Environmental Health Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan 35053, Miaoli County, Taiwan

Received 16 December 2014; Accepted 19 February 2015

Academic Editor: Il Je Yu

Copyright © 2015 Yueh-Hsia Luo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. S. Tourinho, C. A. M. van Gestel, S. Lofts, C. Svendsen, A. M. V. M. Soares, and S. Loureiro, “Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates,” Environmental Toxicology and Chemistry, vol. 31, no. 8, pp. 1679–1692, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Mu and R. L. Sprando, “Application of nanotechnology in cosmetics,” Pharmaceutical Research, vol. 27, no. 8, pp. 1746–1749, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. D. Newman, M. Stotland, and J. I. Ellis, “The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens,” Journal of the American Academy of Dermatology, vol. 61, no. 4, pp. 685–692, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Durán, P. D. Marcato, G. I. H. de Souza, O. L. Alves, and E. Esposito, “Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment,” Journal of Biomedical Nanotechnology, vol. 3, no. 2, pp. 203–208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T. M. Benn and P. Westerhoff, “Nanoparticle silver released into water from commercially available sock fabrics,” Environmental Science & Technology, vol. 42, no. 11, pp. 4133–4139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Panáček, L. Kvítek, R. Prucek et al., “Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity,” The Journal of Physical Chemistry B, vol. 110, no. 33, pp. 16248–16253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Baker, A. Pradhan, L. Pakstis, D. J. Pochan, and S. I. Shah, “Synthesis and antibacterial properties of silver nanoparticles,” Journal of Nanoscience and Nanotechnology, vol. 5, no. 2, pp. 244–249, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Kaegi, B. Sinnet, S. Zuleeg et al., “Release of silver nanoparticles from outdoor facades,” Environmental Pollution, vol. 158, no. 9, pp. 2900–2905, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Zhang, X. L. Wu, Y. Y. Chen, and H. Lin, “Application of silver nanoparticles to cotton fabric as an antibacterial textile finish,” Fibers and Polymers, vol. 10, no. 4, pp. 496–501, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. M. Schrand, M. F. Rahman, S. M. Hussain, J. J. Schlager, D. A. Smith, and A. F. Syed, “Metal-based nanoparticles and their toxicity assessment,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol. 2, no. 5, pp. 544–568, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. K. L. Dreher, “Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles,” Toxicological Sciences, vol. 77, no. 1, pp. 3–5, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Oberdörster, A. Maynard, K. Donaldson et al., “Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy,” Particle and Fibre Toxicology, vol. 2, article 8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science, vol. 311, no. 5761, pp. 622–627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. E. Nel, L. Mädler, D. Velegol et al., “Understanding biophysicochemical interactions at the nano-bio interface,” Nature Materials, vol. 8, no. 7, pp. 543–557, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Tiede, A. B. A. Boxall, S. P. Tear, J. Lewis, H. David, and M. Hassellov, “Detection and characterization of engineered nanoparticles in food and the environment,” Food Additives and Contaminants, Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment, vol. 25, no. 7, pp. 795–821, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. T. H. Mogensen, “Pathogen recognition and inflammatory signaling in innate immune defenses,” Clinical Microbiology Reviews, vol. 22, no. 2, pp. 240–273, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. D. F. Moyano, M. Goldsmith, D. J. Solfiell et al., “Nanoparticle hydrophobicity dictates immune response,” Journal of the American Chemical Society, vol. 134, no. 9, pp. 3965–3967, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Boraschi, L. Costantino, and P. Italiani, “Interaction of nanoparticles with immunocompetent cells: nanosafety considerations,” Nanomedicine (London), vol. 7, no. 1, pp. 121–131, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. B. S. Zolnik, Á. González-Fernández, N. Sadrieh, and M. A. Dobrovolskaia, “Nanoparticles and the immune system,” Endocrinology, vol. 151, no. 2, pp. 458–465, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. A. Dobrovolskaia and S. E. McNeil, “Immunological properties of engineered nanomaterials,” Nature Nanotechnology, vol. 2, no. 8, pp. 469–478, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. S. M. Moghimi, “Chemical camouflage of nanospheres with a poorly reactive surface: towards development of stealth and target-specific nanocarriers,” Biochimica et Biophysica Acta, vol. 1590, no. 1–3, pp. 131–139, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Wang, T. Ishida, and H. Kiwada, “Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes,” Journal of Controlled Release, vol. 119, no. 2, pp. 236–244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Ishida, X. Wang, T. Shimizu, K. Nawata, and H. Kiwada, “PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner,” Journal of Controlled Release, vol. 122, no. 3, pp. 349–355, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. L. Engel, G. E. Holt, and H. Lu, “The pharmacokinetics of Toll-like receptor agonists and the impact on the immune system,” Expert Review of Clinical Pharmacology, vol. 4, no. 2, pp. 275–289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Takeda and S. Akira, “TLR signaling pathways,” Seminars in Immunology, vol. 16, no. 1, pp. 3–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Medzhitov, P. Preston-Hurlburt, and C. A. Janeway Jr., “A human homologue of the Drosophila Toll protein signals activation of adaptive immunity,” Nature, vol. 388, no. 6640, pp. 394–397, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Makkouk and A. M. Abdelnoor, “The potential use of Toll-like receptor (TLR) agonists and antagonists as prophylactic and/or therapeutic agents,” Immunopharmacology and Immunotoxicology, vol. 31, no. 3, pp. 331–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Tamayo, J. M. Irache, C. Mansilla, J. Ochoa-Repáraz, J. J. Lasarte, and C. Gamazo, “Poly(anhydride) nanoparticles act as active Th1 adjuvants through Toll-like receptor exploitation,” Clinical and Vaccine Immunology, vol. 17, no. 9, pp. 1356–1362, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Gnjatic, N. B. Sawhney, and N. Bhardwaj, “Toll-like receptor agonists are they good adjuvants?” Cancer Journal, vol. 16, no. 4, pp. 382–391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Tse and A. A. Horner, “Update on Toll-like receptor-directed therapies for human disease,” Annals of the Rheumatic Diseases, vol. 66, supplement 3, pp. iii77–iii80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Kawai and S. Akira, “The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors,” Nature Immunology, vol. 11, no. 5, pp. 373–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. E. I. Lafferty, S. T. Qureshi, and M. Schnare, “The role of Toll-like receptors in acute and chronic lung inflammation,” Journal of Inflammation (London), vol. 7, article 57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Kawai and S. Akira, “Toll-like receptor and RIG-1-like receptor signaling,” Annals of the New York Academy of Sciences, vol. 1143, pp. 1–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Schmidt, B. Raghavan, V. Müller et al., “Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel,” Nature Immunology, vol. 11, no. 9, pp. 814–819, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. D. M. Smith, J. K. Simon, and J. R. Baker Jr., “Applications of nanotechnology for immunology,” Nature Reviews Immunology, vol. 13, no. 8, pp. 592–605, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Lucarelli, A. M. Gatti, G. Savarino et al., “Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles,” European Cytokine Network, vol. 15, no. 4, pp. 339–346, 2004. View at Google Scholar · View at Scopus
  37. Y. L. Cui, H. T. Liu, M. Zhou et al., “Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles,” Journal of Biomedical Materials Research Part A, vol. 96, no. 1, pp. 221–229, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. P. M. Castillo, J. L. Herrera, R. Fernandez-Montesinos et al., “Tiopronin monolayer-protected silver nanoparticles modulate IL-6 secretion mediated by Toll-like receptor ligands,” Nanomedicine (London), vol. 3, no. 5, pp. 627–635, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Chang, C.-C. Ho, C. S. Yang et al., “Involvement of MyD88 in zinc oxide nanoparticle-induced lung inflammation,” Experimental and Toxicologic Pathology, vol. 65, no. 6, pp. 887–896, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. C.-C. Ho, Y.-H. Luo, T.-H. Chuang, C.-S. Yang, Y.-C. Ling, and P. Lin, “Quantum dots induced monocyte chemotactic protein-1 expression via MyD88-dependent Toll-like receptor signaling pathways in macrophages,” Toxicology, vol. 308, pp. 1–9, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Chen, K. Kanehira, and A. Taniguchi, “Role of Toll-like receptors 3, 4 and 7 in cellular uptake and response to titanium dioxide nanoparticles,” Science and Technology of Advanced Materials, vol. 14, no. 1, Article ID 015008, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Elsabahy and K. L. Wooley, “Cytokines as biomarkers of nanoparticle immunotoxicity,” Chemical Society Reviews, vol. 42, no. 12, pp. 5552–5576, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Kozak, M. J. Kluger, D. Soszynski et al., “IL-6 and IL-1beta in fever—studies using cytokine-deficient (knockout) mice,” Annals of the New York Academy of Sciences, vol. 856, pp. 33–47, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Struyf, M. Gouwy, C. Dillen, P. Proost, G. Opdenakker, and J. van Damme, “Chemokines synergize in the recruitment of circulating neutrophils into inflamed tissue,” European Journal of Immunology, vol. 35, no. 5, pp. 1583–1591, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. B. C. Schanen, A. S. Karakoti, S. Seal, D. R. Drake III, W. L. Warren, and W. T. Self, “Exposure to titanium dioxide nanomaterials provokes inflammation of an in vitro human immune construct,” ACS Nano, vol. 3, no. 9, pp. 2523–2532, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Ghoneum, A. Ghoneum, and J. Gimzewski, “Nanodiamond and nanoplatinum liquid, DPV576, activates human monocyte-derived dendritic cells in vitro,” Anticancer Research, vol. 30, no. 10, pp. 4075–4079, 2010. View at Google Scholar · View at Scopus
  47. C. Hanley, A. Thurber, C. Hanna, A. Punnoose, J. Zhang, and D. G. Wingett, “The influences of cell Type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction,” Nanoscale Research Letters, vol. 4, no. 12, pp. 1409–1420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. H. A. Khan, M. A. K. Abdelhalim, A. S. Alhomida, and M. S. Al Ayed, “Transient increase in IL-1beta, IL-6 and TNF-alpha gene expression in rat liver exposed to gold nanoparticles,” Genetics and Molecular Research, vol. 12, no. 4, pp. 5851–5857, 2013. View at Publisher · View at Google Scholar · View at Scopus
  49. A. S. Yazdi, G. Guarda, N. Riteau et al., “Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 45, pp. 19449–19454, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. V. Pétrilli, S. Papin, C. Dostert, A. Mayor, F. Martinon, and J. Tschopp, “Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration,” Cell Death and Differentiation, vol. 14, no. 9, pp. 1583–1589, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. S. L. Demento, S. C. Eisenbarth, H. G. Foellmer et al., “Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy,” Vaccine, vol. 27, no. 23, pp. 3013–3021, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. A. C. Reisetter, L. V. Stebounova, J. Baltrusaitis et al., “Induction of inflammasome-dependent pyroptosis by carbon black nanoparticles,” The Journal of Biological Chemistry, vol. 286, no. 24, pp. 21844–21852, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. E.-J. Yang, S. Kim, J. S. Kim, and I.-H. Choi, “Inflammasome formation and IL-1beta release by human blood monocytes in response to silver nanoparticles,” Biomaterials, vol. 33, no. 28, pp. 6858–6867, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Yang, K. Flavin, I. Kopf et al., “Functionalization of carbon nanoparticles modulates inflammatory cell recruitment and NLRP3 inflammasome activation,” Small, vol. 9, no. 24, pp. 4194–4206, 2013. View at Publisher · View at Google Scholar · View at Scopus
  55. P. M. Peeters, T. N. Perkins, E. F. M. Wouters, B. T. Mossman, and N. L. Reynaert, “Silica induces NLRP3 inflammasome activation in human lung epithelial cells,” Particle and Fibre Toxicology, vol. 10, no. 1, article 3, 2013. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Hornung, F. Bauernfeind, A. Halle et al., “Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization,” Nature Immunology, vol. 9, no. 8, pp. 847–856, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. F. A. Sharp, D. Ruane, B. Claass et al., “Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 3, pp. 870–875, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Weissleder, M. Nahrendorf, and M. J. Pittet, “Imaging macrophages with nanoparticles,” Nature Materials, vol. 13, no. 2, pp. 125–138, 2014. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Y. Lin, J. P. M. Almeida, A. Bear et al., “Gold nanoparticle delivery of modified CpG stimulates macrophages and inhibits tumor growth for enhanced immunotherapy,” PLoS ONE, vol. 8, no. 5, Article ID e63550, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Ahn, I.-H. Lee, S. Kang et al., “Gold nanoparticles displaying tumor-associated self-antigens as a potential vaccine for cancer immunotherapy,” Advanced Healthcare Materials, vol. 3, no. 8, pp. 1194–1199, 2014. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Bartneck, H. A. Keul, G. Zwadlo-Klarwasser, and J. Groll, “Phagocytosis independent extracellular nanoparticle clearance by human immune cells,” Nano Letters, vol. 10, no. 1, pp. 59–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. V. Brinkmann and A. Zychlinsky, “Neutrophil extracellular traps: is immunity the second function of chromatin?” Journal of Cell Biology, vol. 198, no. 5, pp. 773–783, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. Z. J. Wang, J. Li, J. Cho, and A. B. Malik, “Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils,” Nature Nanotechnology, vol. 9, no. 3, pp. 204–210, 2014. View at Publisher · View at Google Scholar
  64. S. Lanone, F. Rogerieux, J. Geys et al., “Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines,” Particle and Fibre Toxicology, vol. 6, article 14, 2009. View at Google Scholar
  65. S. George, S. Pokhrel, T. Xia et al., “Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping,” ACS Nano, vol. 4, no. 1, pp. 15–29, 2010. View at Publisher · View at Google Scholar
  66. T. Xia, M. Kovochich, M. Liong et al., “Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties,” ACS Nano, vol. 2, no. 10, pp. 2121–2134, 2008. View at Google Scholar
  67. T. J. Brunner, P. Wick, P. Manser et al., “In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility,” Environmental Science & Technology, vol. 40, no. 14, pp. 4374–4381, 2006. View at Publisher · View at Google Scholar
  68. C. M. Sayes, K. L. Reed, and D. B. Warheit, “Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles,” Toxicological Sciences, vol. 97, no. 1, pp. 163–180, 2007. View at Google Scholar
  69. H. A. Jeng and J. Swanson, “Toxicity of metal oxide nanoparticles in mammalian cells,” Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances & Environmental Engineering, vol. 41, no. 12, pp. 2699–2711, 2006. View at Google Scholar
  70. M. R. Riley, D. E. Boesewetter, R. A. Turner et al., “Comparison of the sensitivity of three lung derived cell lines to metals from combustion derived particulate matter,” Toxicology in Vitro, vol. 19, no. 3, pp. 411–419, 2005. View at Google Scholar
  71. K. F. Soto, A. Carrasco, T. G. Powell et al., “Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy,” Journal of Nanoparticle Research, vol. 7, no. 2-3, pp. 145–169, 2005. View at Publisher · View at Google Scholar
  72. K. Soto, K. M. Garza, and L. E. Murr, “Cytotoxic effects of aggregated nanomaterials,” Acta Biomaterialia, vol. 3, no. 3, pp. 351–358, 2007. View at Publisher · View at Google Scholar
  73. S. M. Hussain, K. L. Hess, J. M. Gearhart et al., “In vitro toxicity of nanoparticles in BRL 3A rat liver cells,” Toxicology in Vitro, vol. 19, no. 7, pp. 975–983, 2005. View at Google Scholar
  74. S. M. Hussain, A. K. Javorina, A. M. Schrand et al., “The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion,” Toxicological Sciences, vol. 92, no. 2, pp. 456–463, 2006. View at Google Scholar
  75. K. F. Soto, A. Carrasco, T. G. Powell et al., “Biological effects of nanoparticulate materials,” Materials Science & Engineering C: Biomimetic and Supramolecular Systems, vol. 26, no. 8, pp. 1421–1427, 2006. View at Google Scholar
  76. L. Braydich-Stolle, S. Hussain, J. J. Schlager, and M. C. Hofmann, “In vitro cytotoxicity of nanoparticles in mammalian germline stem cells,” Toxicological Sciences, vol. 88, no. 2, pp. 412–419, 2005. View at Publisher · View at Google Scholar
  77. J. Y. Wang, M. F. Rahman, H. M. Duhart et al., “Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles,” Neurotoxicology, vol. 30, no. 6, pp. 926–933, 2009. View at Publisher · View at Google Scholar
  78. J. M. Veranth, E. G. Kaser, M. M. Veranth et al., “Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts,” Particle and Fibre Toxicology, vol. 4, article 2, 2007. View at Google Scholar
  79. L. K. Limbach, P. Wick, P. Manser et al., “Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress,” Environmental Science & Technology, vol. 41, no. 11, pp. 4158–4163, 2007. View at Publisher · View at Google Scholar
  80. A. J. Wagner, C. A. Bleckmann, R. C. Murdock et al., “Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages,” The Journal of Physical Chemistry B, vol. 111, no. 25, pp. 7353–7359, 2007. View at Google Scholar
  81. Y. S. Kim, J. S. Kim, H. S. Cho et al., “Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats,” Inhalation Toxicology, vol. 20, no. 6, pp. 575–583, 2008. View at Google Scholar
  82. J. H. Ji, J. H. Jung, S. S. Kim et al., “Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats,” Inhalation Toxicology, vol. 19, no. 10, pp. 857–871, 2007. View at Google Scholar
  83. P. V. Asharani, Y. L. Wu, Z. Y. Gong, and S. Valiyaveettil, “Toxicity of silver nanoparticles in zebrafish models,” Nanotechnology, vol. 19, no. 25, Article ID 255102, 2008. View at Publisher · View at Google Scholar
  84. J. P. Chen, S. Patil, S. Seal, and J. F. McGinnis, “Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides,” Nature Nanotechnology, vol. 1, no. 2, pp. 142–150, 2006. View at Publisher · View at Google Scholar
  85. M. F. Rahman, J. Wang, T. A. Patterson et al., “Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles,” Toxicology Letters, vol. 187, no. 1, pp. 15–21, 2009. View at Google Scholar
  86. H. S. Sharma, “Hyperthermia induced brain oedema: current status & future perspectives,” Indian Journal of Medical Research, vol. 123, no. 5, pp. 629–652, 2006. View at Google Scholar
  87. J. F. Hillyer and R. M. Albrecht, “Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles,” Journal of Pharmaceutical Sciences, vol. 90, no. 12, pp. 1927–1936, 2001. View at Publisher · View at Google Scholar
  88. R. J. Griffitt, R. Weil, K. A. Hyndman et al., “Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio),” Environmental Science & Technology, vol. 41, no. 23, pp. 8178–8186, 2007. View at Google Scholar
  89. Z. Chen, H. A. Meng, G. M. Xing et al., “Acute toxicological effects of copper nanoparticles in vivo,” Toxicology Letters, vol. 163, no. 2, pp. 109–120, 2006. View at Google Scholar
  90. M. T. Zhu, W. Y. Feng, B. Wang et al., “Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats,” Toxicology, vol. 247, no. 2-3, pp. 102–111, 2008. View at Publisher · View at Google Scholar
  91. J. X. Wang, G. Q. Zhou, C. Y. Chen et al., “Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration,” Toxicology Letters, vol. 168, no. 2, pp. 176–185, 2007. View at Google Scholar
  92. J. S. Kim, T. J. Yoon, B. G. Kim et al., “Toxicity and tissue distribution of magnetic nanoparticles in mice,” Toxicological Sciences, vol. 89, no. 1, pp. 338–347, 2006. View at Google Scholar
  93. E. Y. Chen, M. Garnica, Y.-C. Wang, A. J. Mintz, C.-S. Chen, and W.-C. Chin, “A mixture of anatase and rutile TiO2 nanoparticles induces histamine secretion in mast cells,” Particle and Fibre Toxicology, vol. 9, article 2, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. A. L. S. John, C. Y. Chan, H. F. Staats, K. W. Leong, and S. N. Abraham, “Synthetic mast-cell granules as adjuvants to promote and polarize immunity in lymph nodes,” Nature Materials, vol. 11, no. 3, pp. 250–257, 2012. View at Publisher · View at Google Scholar · View at Scopus
  95. E. Vivier, E. Tomasello, M. Baratin, T. Walzer, and S. Ugolini, “Functions of natural killer cells,” Nature Immunology, vol. 9, no. 5, pp. 503–510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Ishigami, S. Natsugoe, K. Tokuda et al., “Prognostic value of intratumoral natural killer cells in gastric carcinoma,” Cancer, vol. 88, no. 3, pp. 577–583, 2000. View at Google Scholar
  97. Y. T. Lim, M. Y. Cho, Y.-W. Noh, J. W. Chung, and B. H. Chung, “Near-infrared emitting fluorescent nanocrystals-labeled natural killer cells as a platform technology for the optical imaging of immunotherapeutic cells-based cancer therapy,” Nanotechnology, vol. 20, no. 47, Article ID 475102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. P. Jha, D. Golovko, S. Bains et al., “Monitoring of natural killer cell immunotherapy using noninvasive imaging modalities,” Cancer Research, vol. 70, no. 15, pp. 6109–6113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. E.-S. Jang, J.-H. Shin, G. Ren et al., “The manipulation of natural killer cells to target tumor sites using magnetic nanoparticles,” Biomaterials, vol. 33, no. 22, pp. 5584–5592, 2012. View at Publisher · View at Google Scholar · View at Scopus
  100. J. A. Hubbell, S. N. Thomas, and M. A. Swartz, “Materials engineering for immunomodulation,” Nature, vol. 462, no. 7272, pp. 449–460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. A. E. Gregory, R. Titball, and D. Williamson, “Vaccine delivery using nanoparticles,” Frontiers in Cellular and Infection Microbiology, vol. 3, article 13, 2013. View at Publisher · View at Google Scholar · View at Scopus
  102. N. A. Capurso, M. Look, L. Jeanbart et al., “Development of a nanoparticulate formulation of retinoic acid that suppresses Th17 cells and upregulates regulatory T cells,” Self/Nonself—Immune Recognition and Signaling, vol. 1, no. 4, pp. 335–340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. E. Bettelli, M. Oukka, and V. K. Kuchroo, “T(H)-17 cells in the circle of immunity and autoimmunity,” Nature Immunology, vol. 8, no. 4, pp. 345–350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. Y. Liu, F. Jiao, Y. Qiu et al., “The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α mediated cellular immunity,” Biomaterials, vol. 30, no. 23-24, pp. 3934–3945, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. P. Kidd, “Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease,” Alternative Medicine Review, vol. 8, no. 3, pp. 223–246, 2003. View at Google Scholar · View at Scopus
  106. C. Brandenberger, N. L. Rowley, D. N. Jackson-Humbles et al., “Engineered silica nanoparticles act as adjuvants to enhance allergic airway disease in mice,” Particle and Fibre Toxicology, vol. 10, no. 1, article 26, 2013. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Tomić, J. Đokić, S. Vasilijić et al., “Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro,” PLoS ONE, vol. 9, no. 5, Article ID e96584, 2014. View at Publisher · View at Google Scholar
  108. P. L. Mottram, D. Leong, B. Crimeen-Irwin et al., “Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus,” Molecular Pharmaceutics, vol. 4, no. 1, pp. 73–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. T. Storni, T. M. Kündig, G. Senti, and P. Johansen, “Immunity in response to particulate antigen-delivery systems,” Advanced Drug Delivery Reviews, vol. 57, no. 3, pp. 333–355, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. V. V. Temchura, D. Kozlova, V. Sokolova, K. Überla, and M. Epple, “Targeting and activation of antigen-specific B-cells by calcium phosphate nanoparticles loaded with protein antigen,” Biomaterials, vol. 35, no. 23, pp. 6098–6105, 2014. View at Publisher · View at Google Scholar · View at Scopus
  111. C.-C. Shen, C.-C. Wang, M.-H. Liao, and T.-R. Jan, “A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice,” International Journal of Nanomedicine, vol. 6, pp. 1229–1235, 2011. View at Google Scholar · View at Scopus
  112. S. Yang, M. G. Damiano, H. Zhang et al., “Biomimetic, synthetic HDL nanostructures for lymphoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 7, pp. 2511–2516, 2013. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Gurunathan, K. J. Lee, K. Kalishwaralal, S. Sheikpranbabu, R. Vaidyanathan, and S. H. Eom, “Antiangiogenic properties of silver nanoparticles,” Biomaterials, vol. 30, no. 31, pp. 6341–6350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. M. I. Sriram, S. B. M. Kanth, K. Kalishwaralal, and S. Gurunathan, “Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model,” International Journal of Nanomedicine, vol. 5, no. 1, pp. 753–762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. E. Garanger, D. Boturyn, and P. Dumy, “Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers,” Anti-Cancer Agents in Medicinal Chemistry, vol. 7, no. 5, pp. 552–558, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. A. M. Scott, J. P. Allison, and J. D. Wolchok, “Monoclonal antibodies in cancer therapy,” Cancer Immunity, vol. 12, article 14, 2012. View at Google Scholar · View at Scopus