Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2015, Article ID 161393, 11 pages
http://dx.doi.org/10.1155/2015/161393
Review Article

Role and Function of MicroRNAs in Extracellular Vesicles in Cardiovascular Biology

Department of Internal Medicine II, University Hospital Bonn, Rheinische Friedrich-Wilhelms University, 53105 Bonn, Germany

Received 24 July 2015; Revised 7 September 2015; Accepted 15 September 2015

Academic Editor: Renzhi Han

Copyright © 2015 Philipp Pfeifer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Colombo, G. Raposo, and C. Théry, “Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles,” Annual Review of Cell and Developmental Biology, vol. 30, no. 1, pp. 255–289, 2014. View at Publisher · View at Google Scholar
  2. S. F. Mause and C. Weber, “Microparticles: protagonists of a novel communication network for intercellular information exchange,” Circulation Research, vol. 107, no. 9, pp. 1047–1057, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Dignat-George and C. M. Boulanger, “The many faces of endothelial microparticles,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 1, pp. 27–33, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J. J. Lee, and J. O. Lötvall, “Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells,” Nature Cell Biology, vol. 9, no. 6, pp. 654–659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Cantaluppi, S. Gatti, D. Medica et al., “Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells,” Kidney International, vol. 82, no. 4, pp. 412–427, 2012. View at Publisher · View at Google Scholar
  6. P. Diehl, A. Fricke, L. Sander et al., “Microparticles: major transport vehicles for distinct microRNAs in circulation,” Cardiovascular Research, vol. 93, no. 4, pp. 633–644, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Loyer, A.-C. Vion, A. Tedgui, and C. M. Boulanger, “Microvesicles as cell-cell messengers in cardiovascular diseases,” Circulation Research, vol. 114, no. 2, pp. 345–353, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. E. M. Small, R. J. A. Frost, and E. N. Olson, “MicroRNAs add a new dimension to cardiovascular disease,” Circulation, vol. 121, no. 8, pp. 1022–1032, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J.-J. Song, S. K. Smith, G. J. Hannon, and L. Joshua-Tor, “Crystal structure of Argonaute and its implications for RISC slicer activity,” Science, vol. 305, no. 5689, pp. 1434–1437, 2004. View at Publisher · View at Google Scholar
  10. S. Djuranovic, A. Nahvi, and R. Green, “A parsimonious model for gene regulation by miRNAs,” Science, vol. 331, no. 6017, pp. 550–553, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. D. Arroyo, J. R. Chevillet, E. M. Kroh et al., “Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 12, pp. 5003–5008, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. K. C. Vickers, B. T. Palmisano, B. M. Shoucri, R. D. Shamburek, and A. T. Remaley, “MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins,” Nature Cell Biology, vol. 13, no. 4, pp. 423–433, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. R. A. Boon and K. C. Vickers, “Intercellular transport of MicroRNAs,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, no. 2, pp. 186–192, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. P. S. Mitchell, R. K. Parkin, E. M. Kroh et al., “Circulating microRNAs as stable blood-based markers for cancer detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 30, pp. 10513–10518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Fichtlscherer, S. De Rosa, H. Fox et al., “Circulating microRNAs in patients with coronary artery disease,” Circulation Research, vol. 107, no. 5, pp. 677–684, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Schober, M. Nazari-Jahantigh, and C. Weber, “microRNA-mediated mechanisms of the cellular stress response in atherosclerosis,” Nature Reviews Cardiology, vol. 12, no. 6, pp. 361–374, 2015. View at Publisher · View at Google Scholar
  17. E. Hergenreider, S. Heydt, K. Tréguer et al., “Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs,” Nature Cell Biology, vol. 14, no. 3, pp. 249–256, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. W. D. Gray, K. M. French, S. Ghosh-Choudhary et al., “Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology,” Circulation Research, vol. 116, no. 2, pp. 255–263, 2015. View at Publisher · View at Google Scholar · View at Scopus
  19. S.-G. Ong, W. H. Lee, M. Huang et al., “Cross talk of combined gene and cell therapy in ischemic heart disease,” Circulation Research, pp. 1–25, 2014. View at Google Scholar
  20. F. Jansen, X. Yang, M. Hoelscher et al., “Endothelial microparticle-mediated transfer of microRNA-126 promotes vascular endothelial cell repair via spred1 and is abrogated in glucose-damaged endothelial microparticles,” Circulation, vol. 128, no. 18, pp. 2026–2038, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. G. K. Hansson, “Inflammation, atherosclerosis, and coronary artery disease,” The New England Journal of Medicine, vol. 352, no. 16, pp. 1685–1695, 2005. View at Publisher · View at Google Scholar
  22. J. E. Fish and M. I. Cybulsky, “ApoE attenuates atherosclerosis via miR-146a,” Circulation Research, vol. 117, no. 1, pp. 3–6, 2015. View at Publisher · View at Google Scholar
  23. S. Meiler, Y. Baumer, E. Toulmin, K. Seng, and W. A. Boisvert, “MicroRNA 302a is a novel modulator of cholesterol homeostasis and atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 35, no. 2, pp. 323–331, 2015. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Zhang, W. Qin, L. Zhang et al., “MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the setting of atherosclerosis,” Scientific Reports, vol. 5, pp. 9401–9410, 2015. View at Publisher · View at Google Scholar
  25. F. Jansen, X. Yang, K. Baumann et al., “Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism,” Journal of Cellular and Molecular Medicine, 2015. View at Publisher · View at Google Scholar
  26. A. Caporali, M. Meloni, A. Nailor et al., “p75NTR-dependent activation of NF-κB regulates microRNA-503 transcription and pericyte-endothelial crosstalk in diabetes after limb ischaemia,” Nature Communications, vol. 6, article 8024, 13 pages, 2015. View at Publisher · View at Google Scholar
  27. K. Di Gregoli, N. Jenkins, R. Salter, S. White, A. C. Newby, and J. L. Johnson, “MicroRNA-24 regulates macrophage behavior and retards atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 34, no. 9, pp. 1990–2000, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Schober, M. Nazari-Jahantigh, Y. Wei et al., “MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1,” Nature Medicine, vol. 20, no. 4, pp. 368–376, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Sun, S. He, A. K. M. Wara et al., “Systemic delivery of microRNA-181b inhibits nuclear factor-κB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice,” Circulation Research, vol. 114, no. 1, pp. 32–40, 2014. View at Publisher · View at Google Scholar
  30. A. Zernecke, K. Bidzhekov, H. Noels et al., “Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection,” Science Signaling, vol. 2, no. 100, article ra81, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Climent, M. Quintavalle, M. Miragoli, J. Chen, G. Condorelli, and L. Elia, “TGFβ triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization,” Circulation Research, vol. 116, no. 11, pp. 1753–1764, 2015. View at Publisher · View at Google Scholar
  32. F. Jansen, X. Yang, S. Proebsting et al., “MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease,” Journal of the American Heart Association, vol. 3, no. 6, Article ID e001249, 2014. View at Publisher · View at Google Scholar
  33. P.-E. Rautou, A. S. Leroyer, B. Ramkhelawon et al., “Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration,” Circulation Research, vol. 108, no. 3, pp. 335–343, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. K.-C. Wang, L. X. Garmire, A. Young et al., “Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 7, pp. 3234–3239, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Urbich, D. Kaluza, T. Frömel et al., “MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A,” Blood, vol. 119, no. 6, pp. 1607–1618, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. D. J. Son, S. Kumar, W. Takabe et al., “The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis,” Nature Communications, vol. 4, article 3000, 15 pages, 2013. View at Publisher · View at Google Scholar
  37. A.-C. Vion, B. Ramkhelawon, X. Loyer et al., “Shear stress regulates endothelial microparticle release,” Circulation Research, vol. 112, no. 10, pp. 1323–1333, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Zhou, K.-C. Wang, W. Wu et al., “MicroRNA-21 targets peroxisome proliferators-activated receptor-α in an autoregulatory loop to modulate flow-induced endothelial inflammation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 25, pp. 10355–10360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. X. Loyer, S. Potteaux, A.-C. Vion et al., “Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice,” Circulation Research, vol. 114, no. 3, pp. 434–443, 2014. View at Google Scholar · View at Scopus
  40. W. Wu, H. Xiao, A. Laguna-Fernandez et al., “Flow-dependent regulation of krüppel-like factor 2 is mediated by MicroRNA-92a,” Circulation, vol. 124, no. 5, pp. 633–641, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Fang and P. F. Davies, “Site-specific microRNA-92a regulation of Krüppel-like factors 4 and 2 in atherosusceptible endothelium,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 4, pp. 979–987, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Fang, C. Shi, E. Manduchi, M. Civelek, and P. F. Davies, “MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 30, pp. 13450–13455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Zhou, K.-C. Wang, W. Wu et al., “microRNA-21 targets peroxisome proliferators-activated receptor-α in an autoregulatory loop to modulate flow-induced endothelial inflammation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 25, pp. 10355–10360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. X. Qin, X. Wang, Y. Wang et al., “MicroRNA-19a mediates the suppressive effect of laminar flow on cyclin D1 expression in human umbilical vein endothelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 7, pp. 3240–3244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Lovren, Y. Pan, A. Quan et al., “MicroRNA-145 targeted therapy reduces atherosclerosis,” Circulation, vol. 126, no. 11, pp. S81–S90, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Zampetaki, S. Kiechl, I. Drozdov et al., “Plasma MicroRNA profiling reveals loss of endothelial MiR-126 and other MicroRNAs in type 2 diabetes,” Circulation Research, vol. 107, no. 6, pp. 810–817, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Fleissner, V. Jazbutyte, J. Fiedler et al., “Asymmetric dimethylarginine impairs angiogenic progenitor cell function in patients with coronary artery disease through a MicroRNA-21-dependent mechanism,” Circulation Research, vol. 107, no. 1, pp. 138–143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. J.-M. Daniel, D. Penzkofer, R. Teske et al., “Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury,” Cardiovascular Research, vol. 103, no. 4, pp. 564–572, 2014. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Poliseno, A. Tuccoli, L. Mariani et al., “MicroRNAs modulate the angiogenic properties of HUVECs,” Blood, vol. 108, no. 9, pp. 3068–3071, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. Q. Zhang, I. Kandic, and M. J. Kutryk, “Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease,” Biochemical and Biophysical Research Communications, vol. 405, no. 1, pp. 42–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. Z. Xu, Y. Han, J. Liu et al., “MiR-135b-5p and MiR-499a-3p promote cell proliferation and migration in atherosclerosis by directly targeting MEF2C,” Scientific Reports, vol. 5, Article ID 12276, 2015. View at Publisher · View at Google Scholar
  52. H. S. Cheng, N. Sivachandran, A. Lau et al., “MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways,” EMBO Molecular Medicine, vol. 5, no. 7, pp. 1017–1034, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Jansen, X. Yang, B. S. Franklin et al., “High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation,” Cardiovascular Research, vol. 98, no. 1, pp. 94–106, 2013. View at Publisher · View at Google Scholar · View at Scopus
  54. R. C. Lai, F. Arslan, M. M. Lee et al., “Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury,” Stem Cell Research, vol. 4, no. 3, pp. 214–222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. C. M. Boulanger, A. Scoazec, T. Ebrahimian et al., “Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction,” Circulation, vol. 104, no. 22, pp. 2649–2652, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. E. van Rooij, L. B. Sutherland, N. Liu et al., “A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 48, pp. 18255–18260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Bang, S. Batkai, S. Dangwal et al., “Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy,” The Journal of Clinical Investigation, vol. 124, no. 5, pp. 2136–2146, 2014. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Halkein, S. P. Tabruyn, M. Ricke-Hoch et al., “MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy,” Journal of Clinical Investigation, vol. 123, no. 5, pp. 2143–2154, 2013. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Barile, V. Lionetti, E. Cervio et al., “Extracellular vesicles fromhuman cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function aftermyocardial infarction,” Cardiovascular Research, vol. 103, no. 4, pp. 530–541, 2014. View at Publisher · View at Google Scholar · View at Scopus
  60. A. G.-E. Ibrahim, K. Cheng, and E. Marbán, “Exosomes as critical agents of cardiac regeneration triggered by cell therapy,” Stem Cell Reports, vol. 2, no. 5, pp. 606–619, 2014. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Roncarati, C. V. Anselmi, M. A. Losi et al., “Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy,” Journal of the American College of Cardiology, vol. 63, no. 9, pp. 920–927, 2014. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Nair, S. Kumar, E. Gongora, and S. Gupta, “Circulating miRNA as novel markers for diastolic dysfunction,” Molecular and Cellular Biochemistry, vol. 376, no. 1-2, pp. 33–40, 2013. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Jaguszewski, J. Osipova, J.-R. Ghadri et al., “A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction,” European Heart Journal, vol. 35, no. 15, pp. 999–1006, 2014. View at Publisher · View at Google Scholar · View at Scopus
  64. C. Guay, V. Menoud, S. Rome, and R. Regazzi, “Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells,” Cell Communication and Signaling, vol. 13, article 17, 2015. View at Publisher · View at Google Scholar
  65. F. Barutta, M. Tricarico, A. Corbelli et al., “Urinary exosomal MicroRNAs in incipient diabetic nephropathy,” PLoS ONE, vol. 8, no. 11, Article ID e73798, 2013. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Mocharla, S. Briand, G. Giannotti et al., “AngiomiR-126 expression and secretion from circulating CD34+ and CD14+ PBMCs: role for proangiogenic effects and alterations in type 2 diabetics,” Blood, vol. 121, no. 1, pp. 226–236, 2013. View at Publisher · View at Google Scholar · View at Scopus
  67. E. van Rooij and E. N. Olson, “MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles,” Nature Reviews Drug Discovery, vol. 11, no. 11, pp. 860–872, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. H. L. A. Janssen, H. W. Reesink, E. J. Lawitz et al., “Treatment of HCV infection by targeting microRNA,” The New England Journal of Medicine, vol. 368, no. 18, pp. 1685–1694, 2013. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Fiedler, V. Jazbutyte, B. C. Kirchmaier et al., “MicroRNA-24 regulates vascularity after myocardial infarction,” Circulation, vol. 124, no. 6, pp. 720–730, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. R. Kumarswamy, I. Volkmann, V. Jazbutyte, S. Dangwal, D.-H. Park, and T. Thum, “Transforming growth factor-β-induced endothelial-to-mesenchymal transition is partly mediated by MicroRNA-21,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 2, pp. 361–369, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. E. van Rooij, L. B. Sutherland, J. E. Thatcher et al., “Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 35, pp. 13027–13032, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. G. Santulli, A. Wronska, K. Uryu et al., “A selective microRNA-based strategy inhibits restenosis while preserving endothelial function,” The Journal of Clinical Investigation, vol. 124, no. 9, pp. 4102–4114, 2014. View at Publisher · View at Google Scholar · View at Scopus
  73. N. Nouraee and S. J. Mowla, “miRNA therapeutics in cardiovascular diseases: promises and problems,” Frontiers in Genetics, vol. 6, article 232, 2015. View at Publisher · View at Google Scholar
  74. Y. Zhang, D. Liu, X. Chen et al., “Secreted monocytic miR-150 enhances targeted endothelial cell migration,” Molecular Cell, vol. 39, no. 1, pp. 133–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. C. J. Cheng and W. M. Saltzman, “Polymer nanoparticle-mediated delivery of MicroRNA inhibition and alternative splicing,” Molecular Pharmaceutics, vol. 9, no. 5, pp. 1481–1488, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. I. A. Babar, C. J. Cheng, C. J. Booth et al., “Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 26, pp. E1695–E1704, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Anand, B. K. Majeti, L. M. Acevedo et al., “MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis,” Nature Medicine, vol. 16, no. 8, pp. 909–914, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Chen, X. Zhu, X. Zhang, B. Liu, and L. Huang, “Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy,” Molecular Therapy, vol. 18, no. 9, pp. 1650–1656, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. J. Su, H. Baigude, J. McCarroll, and T. M. Rana, “Silencing microRNA by interfering nanoparticles in mice,” Nucleic Acids Research, vol. 39, no. 6, article e38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. G. Mullokandov, A. Baccarini, A. Ruzo et al., “High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries,” Nature Methods, vol. 9, no. 8, pp. 840–846, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Li and J. Zhang, “Circulating microRNAs: potential and emerging biomarkers for diagnosis of cardiovascular and cerebrovascular diseases,” BioMed Research International, vol. 2015, Article ID 730535, 9 pages, 2015. View at Publisher · View at Google Scholar